CRC Handbook of Chemistry and Physics

Editor-in-Chief

David R. Lide Former Director, Standard Reference Data National Institute of Standards and Technology

Editorial Advisory Board

Grace Baysinger Swain Chemistry and Chemical Engineering Library Stanford University Stanford, CA 94305-5080

Lev I. Berger California Institute of Electronics and Materials Science 2115 Flame Tree Way Hemet, CA 92545

Robert N. Goldberg Biotechnology Division National Institute of Standards and Technology Gaithersburg, MD 20899

Henry V. Kehiaian ITODYS University of Paris VII 1, rue Guy de la Brosse 75005 Paris, France

Kozo Kuchitsu Department of Chemistry Josai University, Sakado 350-0295, Japan

Gerd Rosenblatt 1177 Miller Avenue Berkeley, CA 94708

Dana L. Roth Millikan Library / Caltech 1-32 1200 E. California Blvd. Pasadena, CA 91125

Daniel Zwillinger Mathematics Department Rensselaer Polytechnic Institute Troy, NY 12180

PREFACE

The 87th Edition of the *CRC Handbook of Chemistry and Physics* continues the overall philosophy of this work, namely, to provide broad coverage of all types of physical science data commonly encountered by scientists and engineers. Notwithstanding the growing availability of specialized databases on the Internet, we feel there is still a need for a concise, reliable reference source spanning the full range of the physical sciences and focusing on key data that are frequently needed by R&D professionals, engineers, and students. The *CRC Handbook*, in its print, CD-ROM, and Internet formats, is aimed at serving these needs. The data contained in the *Handbook* have been carefully evaluated by experts in each field; quality control is a high priority and the sources are documented. The annual updates make it possible to add new and better data in a timely fashion. In this way we hope to continue the role of the *CRC Handbook* as a unique reference source.

Among the changes in the 87th Edition are major revisions of four heavily used tables:

• *Physical Constants of Inorganic Compounds* has been completely updated, and the number of compounds has been increased by 20%.

• *Bond Dissociation Energies* has been updated with results from the latest literature, and the coverage has been expanded to include organometallics, low molecular weight biochemical compounds, and positive ions. The total number of chemical bonds covered is now 4193, as compared to 2579 in the 86th Edition.

• *Table of the Isotopes*, the comprehensive listing of the energies and radiation properties of all known isotopes, has been brought up to date with results from the literature up to the beginning of 2006. This definitive compilation now includes over 4500 individual isotopes.

• *Scientific Abbreviations and Symbols* has been expanded to about 1100 entries and includes more acronyms from quantum chemistry and abbreviations for chemicals of environmental interest.

Fourteen other tables have been updated. Of particular note are two tables based on very recent IUPAC recommendations: *Standard Atomic Weights (2005)* and *Nomenclature for Inorganic Ions and Ligands*. There is also a new table on *Specific Enthalpies of Solution of Polymers and Copolymers*.

In addition to offering the full text of the print edition in searchable pdf format, the Internet version presents the major tables of numerical data in the form of interactive tables that can be sorted, filtered, and combined in various ways. Substances in these tables can be retrieved by searching on name, formula, or CAS Registry Number, and such a search can be combined with a request for a desired property. Thus one can request a specific property of a specific substance and receive a customized table with exactly that information. Inverse searches can also be done, in which one asks for all substances that have a set of properties falling within specified ranges.

The Editor appreciates suggestions on new topics for the *Handbook* and notification of any errors. Comments on the search software are also welcomed. Address all comments to Editor-in-Chief, *CRC Handbook of Chemistry and Physics*, Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487. Comments may also be sent by electronic mail to drlide@post.harvard.edu.

The *Handbook of Chemistry and Physics* is dependent on the efforts of many contributors throughout the world. The list of current contributors follows this Preface. Valuable suggestions have been received from the Editorial Advisory Board and from many users. The assistance and support of Dr. Fiona Macdonald is greatly appreciated. Finally, I want to thank Ronel Decius and Robert Morris of Taylor & Francis for their excellent work in developing the programs for the Internet version.

David R. Lide June 2006

The 87th Edition is dedicated to the memory of Elizabeth G. Breen, 1916-2005

How To Cite this Reference

The recommended form of citation is: David R. Lide, ed., *CRC Handbook of Chemistry and Physics, Internet Version 2007, (87th Edition), <http://www.hbcpnetbase.com>,* Taylor and Francis, Boca Raton, FL, 2007. If a specific table is cited, use the format: "Physical Constants of Organic Compounds", in *CRC Handbook of Chemistry and Physics, Internet Version 2007, (87th Edition),* David R. Lide, ed., Taylor and Francis, Boca Raton, FL.

This work contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Best efforts have been made to select and verify the data on the basis of sound scientific judgment, but the author and the publisher cannot accept responsibility for the validity of all materials or for the consequences of their use.

© Copyright Taylor and Francis Group LLC 2007

CURRENT CONTRIBUTORS

Robert A. Alberty Department of Chemistry Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Lev I. Berger California Institute of Electronics and Materials Science 2115 Flame Tree Way Hemet, California 92545

A. K. Covington Department of Chemistry University of Newcastle Newcastle upon Tyne NE1 7RU England

K. Fischer LTP GmbH Oppelner Strasse 12 D-26135 Oldenburg, Germany

Jean-Claude Fontaine ITODYS CNRS, University of Paris VII 1 rue Guy de la Brosse 75005 Paris, France

J. R. Fuhr Atomic Physics Division National Institute of Standards and Technology Gaithersburg, Maryland 20899

J. Gmehling Universität Oldenburg Fakultät V, Technische Chemie D-26111 Oldenburg, Germany

Robert N. Goldberg Biotechnology Division National Institute of Standards and Technology Gaithersburg, Maryland 20899

Norman E. Holden National Nuclear Data Center Brookhaven National Laboratory Upton, New York 11973

Henry V. Kehiaian ITODYS University of Paris VII 1 rue Guy de la Brosse 75005 Paris, France **J. Alistair Kerr** School of Chemistry University of Birmingham Birmingham B 15 2TT England

William H. Koppenol Dept CHAB Lab. f. Anorg. Chemie, HCI H211 Wolfgang-Pauli-Strasse 10 ETH Hönggerberg CH-8093 Zürich, Switzerland

J. Krafczyk DDBST GmbH Industriestrasse 1 D-26121 Oldenburg, Germany

Frank J. Lovas 8616 Melwood Rd. Bethesda, Maryland 20817

Yu-Ran Luo College of Marine Science University of South Florida 140 7th Ave. South St. Petersburg, Florida 33701

William C. Martin Atomic Physics Division National Institute of Standards and Technology Gaithersburg, Maryland 20899

J. Menke DDBST GmbH Industriestrasse 1 D-26121 Oldenburg, Germany

Thomas M. Miller Air Force Research Laboratory/VSBP 29 Randolph Rd. Hanscom AFB, Massachusetts 01731-3010

Peter J. Mohr Physics Laboratory National Institute of Standards and Technology Gaithersburg, Maryland 20899

Cedric J. Powell Surface and Microanalysis Science Division National Institute of Standards and Technology Gaithersburg, Maryland 20899 Joseph Reader Atomic Physics Division National Institute of Standards and Technology Gaithersburg, Maryland 20899

Paul A. Redhead 1958 Norway Crescent Ottawa, Ontario K1H 5N7 Canada

Lewis E. Snyder Astronomy Department University of Illinois Urbana, Illinois 61801

Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, Maryland 20899

Petr Vanýsek Department of Chemistry Northern Illinois University DeKalb, Illinois 60115

Wolfgang L. Wiese Atomic Physics Division National Institute of Standards and Technology Gaithersburg, Maryland 20899

Christian Wohlfarth Martin Luther University Institute of Physical Chemistry Mühlpforte 1 06108 Halle (Saale), Germany

Daniel Zwillinger Mathematics Department Rensselaer Polytechnic Institute Troy, New York 12180

Piotr Zyla Particle Data Group Lawrence Berkeley Laboratory Berkeley, California 94720

FUNDAMENTAL PHYSICAL CONSTANTS

Peter J. Mohr and Barry N. Taylor

These tables give the 2002 self-consistent set of values of the basic constants and conversion factors of physics and chemistry recommended by the Committee on Data for Science and Technology (CODATA) for international use. The 2002 set replaces the previously recommended 1998 CODATA set. The 2002 adjustment takes into account the data considered in the 1998 adjustment as well as the data that became available between 31 December 1998, the closing date of that adjustment, and 31 December 2002, the closing date of the new adjustment.

This report was prepared by the authors under the auspices of the CODATA Task Group on Fundamental Constants. The members of the Task Group are:

- F. Cabiati, Istituto Elettrotecnico Nazionale "Galileo Ferraris," Italy
- E. R. Cohen, Science Center, Rockwell International (retired), United States of America
- K. Fujii, National Metrology Institute of Japan, Japan
- S. G. Karshenboim, D. I. Mendeleyev All-Russian Research Institute for Metrology, Russian Federation
- I. Lindgren, Chalmers University of Technology and Göteborg University, Sweden

- B. A. Mamyrin, A. F. Ioffe Physical-Technical Institute, Russian Federation
- W. Martienssen, Johann Wolfgang Goethe-Universität, Germany
- P. J. Mohr, National Institute of Standards and Technology, United States of America
- F. Nez, Laboratoire Kastler-Brossel, France
- B. W. Petley, National Physical Laboratory, United Kingdom
- T. J. Quinn, Bureau International des Poids et Mesures
- B. N. Taylor, National Institute of Standards and Technology, United States of America
- W. Wöger, Physikalisch-Technische Bundesanstalt, Germany
- B. M. Wood, National Research Council, Canada
- Z. Zhang, National Institute of Metrology, China (People's Republic of)

Reference

Mohr, P. J. and Taylor, B. N., *The 2002 CODATA Recommended Values of the Fundamental Physical Constants*, Web Version 4.0, NIST Physical Data web site http://physics.nist.gov/cuu/constants (December 2003); *Rev. Mod. Phys.* 76, No. 4, October 2004.

TABLE I. An Abbreviated List of the CODATA Recommended Values of the Fundamental Constants of Physics and Chemistry Based on the 2002 Adjustment

Quanity	Symbol	Numerical value	Unit	Relative std. uncert. <i>u</i> _
speed of light in vacuum	c, c ₀	299 792 458	$m s^{-1}$	(exact)
magnetic constant	μ	$4\pi \times 10^{-7}$	N A ⁻²	
C C C C C C C C C C C C C C C C C C C	. 0	$= 12.566\ 370\ 614 \times 10^{-7}$	N A ⁻²	(exact)
electric constant $1/\mu_0 c^2$	ε	8.854 187 817 × 10^{-12}	$F m^{-1}$	(exact)
Newtonian constant of gravitation	$\overset{\circ}{G}$	$6.6742(10) \times 10^{-11}$	$m^3 kg^{-1} s^{-2}$	1.5×10^{-4}
Planck constant	h	$6.626\ 0.693(11) imes 10^{-34}$	Js	1.7×10^{-7}
$h/2\pi$	ħ	$1.054\ 571\ 68(18) imes 10^{-34}$	Js	1.7×10^{-7}
elementary charge	е	$1.602\ 176\ 53(14) \times 10^{-19}$	С	8.5×10^{-8}
magnetic flux quantum $h/2e$	Φ ₀	$2.067\ 833\ 72(18) imes 10^{-15}$	Wb	8.5×10^{-8}
conductance quantum $2e^2/h$	G_0	$7.748\ 091\ 733(26) imes 10^{-5}$	S	3.3×10^{-9}
electron mass	m	$9.109\ 3826(16) \times 10^{-31}$	kg	1.7×10^{-7}
proton mass	m	$1.672\ 621\ 71(29) imes 10^{-27}$	kg	1.7×10^{-7}
proton-electron mass ratio	<i>m</i> _/ <i>m</i> _	1836.152 672 61(85)		4.6×10^{-10}
fine-structure constant $e^2/4\pi\epsilon_0\hbar c$	α	$7.297\ 352\ 568(24) imes 10^{-3}$		3.3×10^{-9}
inverse fine-structure constant	α^{-1}	137.035 999 11(46)		3.3×10^{-9}
Rydberg constant $\alpha^2 m_{\rm e} c/2h$	$R_{_{\infty}}$	10 973 731.568 525(73)	m^{-1}	6.6×10^{-12}
Avogadro constant	$N_{\rm A}$, L	$6.022\ 1415(10) \times 10^{23}$	mol^{-1}	1.7×10^{-7}
Faraday constant $N_{\rm A}e$	F	96 485.3383(83)	C mol ⁻¹	8.6×10^{-8}
molar gas constant	R	8.314 472(15)	J mol ⁻¹ K ⁻¹	1.7×10^{-6}
Boltzmann constant R/N _A	k	$1.380\ 6505(24) \times 10^{-23}$	J K ⁻¹	1.8×10^{-6}
Stefan-Boltzmann constant ($\pi^2/60$) k^4/\hbar^3c^2	σ	$5.670\;400(40)\times10^{-8}$	$W \ m^{-2} \ K^{-4}$	7.0×10^{-6}
Non-SI units accepted for use with the SI				
electron volt: (e/C) J	eV	$1.602\ 176\ 53(14) \times 10^{-19}$	J	8.5×10^{-8}
(unified) atomic mass unit 1 u = $m_u = (1/12)m(^{12}C) = 10^{-3} \text{ kg mol}^{-1}/N_A$	u	1.660 538 86(28) × 10 ⁻²⁷	kg	1.7×10^{-7}

TABLE II. The CODATA Recommended Values of the Fundamental Constants of Physics and Chemistry Based on the 2002 Adjustment

Quantity Universal	Symbol	Numerical value	Unit	Relative std. uncert. <i>u</i> _r
speed of light in vacuum	<i>C</i> , <i>C</i> ₀	299 792 458	$m s^{-1}$	(exact)
magnetic constant		$4\pi \times 10^{-7}$	N A ⁻²	(cract)
ingrete consume	μ_{0}	$= 12.566 \ 370 \ 614 \times 10^{-7}$	N A ⁻²	(exact)
electric constant $1/\mu_0 c^2$	ε ₀	$8.854\ 187\ 817 \times 10^{-12}$	F m ⁻¹	(exact)
characteristic impedance of vacuum $\sqrt{\mu_0/\epsilon_0} = \mu_0 c$	Z_0	376.730 313 461	Ω	(exact)
Newtonian constant of gravitation	G^{0}	$6.6742(10) \times 10^{-11}$	m ³ kg ⁻¹ s ⁻²	1.5×10^{-4}
	G/ħc	$6.7087(10) \times 10^{-39}$	$(\text{GeV}/c^2)^{-2}$	1.5×10^{-4}
Planck constant	h	$6.626\ 0693(11) \times 10^{-34}$	Js	1.7×10 ⁻⁷
in eV s		$4.135\ 667\ 43(35) \times 10^{-15}$	eV s	8.5×10^{-8}
$h/2\pi$	ħ	$1.054\ 571\ 68(18) \times 10^{-34}$	Js	1.7×10 ⁻⁷
in eV s		6.582 119 15(56) × 10 ⁻¹⁶	eV s	8.5×10^{-8}
$\hbar c$ in MeV fm		197.326 968(17)	MeV fm	8.5×10^{-8}
Planck mass $(\hbar c/G)^{1/2}$	$m_{\rm p}$	$2.176\ 45(16) \times 10^{-8}$	kg	7.5×10^{-5}
Planck temperature $(\hbar c^5/G)^{1/2}/k$	$T_{\rm p}^{\rm P}$	$1.416~79(11) \times 10^{32}$	ĸ	7.5×10 ⁻⁵
Planck length $\hbar/m_{\nu}c = (\hbar G/c^3)^{1/2}$	$l_{\rm p}^{\rm P}$	$1.616\ 24(12) \times 10^{-35}$	m	7.5×10^{-5}
Planck time $l_p/c = (\hbar G/c^5)^{1/2}$	$t_{\rm p}$	$5.391\ 21(40) \times 10^{-44}$	S	7.5×10 ⁻⁵
·	P			
Electromagnetic				
elementary charge	е	$1.602\ 176\ 53(14) \times 10^{-19}$	С	8.5×10^{-8}
	e/h	$2.417\ 989\ 40(21) \times 10^{14}$	A J ⁻¹	8.5×10^{-8}
magnetic flux quantum $h/2e$	φ ₀	$2.067\ 833\ 72(18) \times 10^{-15}$	Wb	8.5×10 ⁻⁸
conductance quantum $2e^2/h$	$G_{_0}$	7.748 091 733(26)×10 ⁻⁵	S	3.3×10^{-9}
inverse of conductance quantum	G_0^{-1}	12 906.403 725(43)	Ω	3.3×10 ⁻⁹
Josephson constant ¹ 2 <i>e</i> / <i>h</i>	$K_{\rm j}$	483 597.879(41)×10 ⁹	$Hz V^{-1}$	8.5×10^{-8}
von Klitzing constant ² $h/e^2 = \mu_0 c/2\alpha$	Ŕĸ	25 812.807 449(86)	Ω	3.3×10^{-9}
Bohr magneton $e\hbar/2m_{e}$	μ	927.400 949(80)×10 ⁻²⁶	J T ⁻¹	8.6×10^{-8}
in eV T ⁻¹	b	5.788 381 804(39)×10 ⁻⁵	$eV T^{-1}$	6.7×10 ⁻⁹
	$\mu_{\rm B}/h$	13.996 2458(12)×10 ⁹	Hz T ⁻¹	8.6×10 ⁻⁸
	$\mu_{\rm B}/hc$	46.686 4507(40)	$m^{-1} T^{-1}$	8.6×10^{-8}
	$\mu_{\rm B}/k$	0.671 7131(12)	$K T^{-1}$	1.8×10^{-6}
nuclear magneton $e\hbar/2m_{\rm p}$	μ_{N}	5.050 783 43(43)×10 ⁻²⁷	J T ⁻¹	8.6×10^{-8}
in eV T ⁻¹		3.152 451 259(21)×10 ⁻⁸	$eV T^{-1}$	6.7×10 ⁻⁹
	$\mu_{\rm N}/h$	7.622 593 71(65)	$MHz \ T^{-1}$	8.6×10^{-8}
	$\mu_{\rm N}/hc$	$2.542\ 623\ 58(22) \times 10^{-2}$	$m^{-1} T^{-1}$	8.6×10^{-8}
	$\mu_{\rm N}/k$	3.658 2637(64)×10 ⁻⁴	$\mathrm{K}~\mathrm{T}^{-1}$	1.8×10^{-6}
Atomic and Nuclear				
General				
Fine-structure constant $e^2/4\pi\epsilon_0\hbar c$	α	7.297 352 568(24)×10 ⁻³		3.3×10^{-9}
inverse fine-structure constant	α^{-1}	137.035 999 11(46)		3.3×10^{-9}
Rydberg constant $\alpha^2 m_e c/2h$	$R_{_{\infty}}$	10 973 731.568 525(73)	m^{-1}	6.6×10^{-12}
	$R_{\infty}c$	3.289 841 960 360(22)×1015	Hz	6.6×10^{-12}
	$R_{m}hc$	$2.179\ 872\ 09(37) \times 10^{-18}$	J	1.7×10^{-7}
$R_{\odot}hc$ in eV		13.605 6923(12)	eV	8.5×10^{-8}
Bohr radius $\alpha/4\pi R_{\infty} = 4\pi \epsilon_0 \hbar^2/m_e^2$	a_{0}	$0.529\ 177\ 2108(18) \times 10^{-10}$	m	3.3×10^{-9}
Hartree energy $e^2/4\pi\epsilon_0 a_0 = 2R_{\omega}hc = \alpha^2 m_e c^2$	$E_{\rm h}$	$4.359\ 744\ 17(75) \times 10^{-18}$	J	1.7×10^{-7}
in eV		27.211 3845(23)	eV	8.5×10^{-8}
quantum of circulation	$h/2m_{e}$	3.636 947 550(24)×10 ⁻⁴	$m^2 s^{-1}$	6.7×10 ⁻⁹
	h/m_{e}	$7.273\ 895\ 101(48) \times 10^{-4}$	$m^2 s^{-1}$	6.7×10 ⁻⁹
Electroweak				
Fermi coupling constant ³	$G_{\rm F}^{}/(\hbar c)^3$	1.166 39(1)×10 ⁻⁵	GeV ⁻²	8.6×10 ⁻⁶
weak mixing angle ⁴ $\theta_{\rm w}$ (on-shell scheme) $\sin^2 \theta_{\rm w} = s_{\rm w}^2 \equiv 1 - (m_{\rm w}/m_{\rm z})^2$	$\sin^2 \theta_{W}$	0.222 15(76)		3.4×10 ⁻³
Electron, e ⁻				
electron mass	m _e	9.109 3826(16)×10 ⁻³¹	kg	1.7×10^{-7}
in u, $m_e = A_r(e)$ u (electron relative atomic mass times u)	e	5.485 799 0945(24)×10 ⁻⁴	u	4.4×10^{-10}
e r , ,				

tau-electron mass ratio

tau-muon mass ratio

tau-proton mass ratio

tau molar mass $N_{\rm A}m_{
m r}$

 $\lambda_{C,\tau}^{}/2\pi$

tau-neutron mass ratio

tau Compton wavelength $h/m_{_{\rm T}}c$

Quantity	Symbol	Numerical value
Quantity energy equivalent	Symbol	Numerical value
in MeV	$m_{\rm e}c^2$	8.187 1047(14)×10
	100 / 100	0.510 998 918(44) 4.836 331 67(13)×
electron-muon mass ratio electron-tau mass ratio	$m_{\rm e}/m_{\mu}$	2.875 64(47)×10 ⁻⁴
	$m_{\rm e}/m_{\rm T}$	
electron-proton mass ratio	$m_{\rm e}/m_{\rm p}$	5.446 170 2173(25
electron-neutron mass ratio electron-deuteron mass ratio	$m_{\rm e}/m_{\rm n}$	5.438 673 4481(38 2.724 437 1095(13
electron to alpha particle mass ratio	$m_{\rm e}/m_{\rm d}$	
	$m_{\rm e}/m_{\alpha}$	1.370 933 555 75(6
electron charge to mass quotient	$-e/m_{\rm e}$	-1.758 820 12(15) 5.485 799 0945(24
electron molar mass $N_{\rm A}m_{\rm e}$	$M(e), M_e$	
Compton wavelength $h/m_e c$	λ_{c}	2.426 310 238(16)
$\lambda_c/2\pi = \alpha a_0 = \alpha^2/4\pi R_{\infty}$	$\lambda_{_{ m C}}$	386.159 2678(26)×
classical electron radius $\alpha^2 a_0$	r _e	2.817 940 325(28):
Thomson cross section $(8\pi/3)r_{ m e}^2$	$\sigma_{_{e}}$	0.665 245 873(13)
electron magnetic moment	μ	-928.476 412(80)×
to Bohr magneton ratio	μ_e/μ_B	-1.001 159 652 18
to nuclear magneton ratio	μ_e/μ_N	-1838.281 971 07(
electron magnetic moment anomaly $ \mu_e /\mu_B - 1$	a _e	1.159 652 1859(38
electron g-factor $-2(1 + a_e)$	g _e	-2.002 319 304 37
electron-muon magnetic moment ratio	μ_{e}/μ_{μ}	206.766 9894(54)
electron-proton magnetic moment ratio	$\mu_e \mu_p$	-658.210 6862(66)
electron to shielded proton magnetic moment ratio (H ₂ O, sphere, 25°C)	μ_{e}/μ_{p}'	-658.227 5956(71)
electron-neutron magnetic moment ratio	μ_e/μ_n	960.920 50(23)
electron-deuteron magnetic moment ratio	μ_e/μ_d	-2 143.923 493(23
electron to shielded helion⁵ magnetic moment ratio (gas, sphere, 25°C)	$\mu_{\rm e}/\mu_{\rm h}'$	864.058 255(10)
electron gyromagnetic ratio $2 \mu_a /\hbar$		1.760 859 74(15)×
electron gyroniagnetic ratio $2 \mu_e /\hbar$	Υ _e γ _e /2π	28 024.9532(24)
	$I_e^{/2R}$	20 02 1.9332(21)
Muon, µ⁻		
muon mass	m _µ	1.883 531 40(33)×
in u, $m_{\mu} = A_r(\mu)$ u (muon relative atomic mass times u)		0.113 428 9264(30
energy equivalent	$m_{\mu}c^2$	1.692 833 60(29)×
in MeV		105.658 3692(94)
muon-electron mass ratio	m_{μ}/m_{e}	206.768 2838(54)
muon-tau mass ratio	m_{μ}/m_{τ}	5.945 92(97)×10 ⁻²
muon-proton mass ratio	m_{μ}/m_{p}	0.112 609 5269(29
muon-neutron mass ratio	m_{μ}/m_{n}	0.112 454 5175(29
muon molar mass $N_A m_\mu$	$\dot{M(\mu)}, M_{\mu}$	0.113 428 9264(30
muon Compton wavelength $h/m_{\mu}c$	λ _{C,μ}	11.734 441 05(30)
$\lambda_{\mathrm{C},\mu}/2\pi$	λ _{C, μ}	1.867 594 298(47)
muon magnetic moment	μ	-4.490 447 99(40)
to Bohr magneton ratio	μ_{μ}^{F}/μ_{B}	-4.841 970 45(13)
to nuclear magneton ratio	μ_{μ}/μ_{N}	-8.890 596 98(23)
muon magnetic moment anomaly $ \mu_{\mu} /(e\hbar/2m_{\mu}) - 1$	α	1.165 919 81(62)×
muon g-factor $-2(1 + \alpha_{\mu})$	g_{μ}^{μ}	-2.002 331 8396(1
muon-proton magnetic moment ratio	μ_{μ}/μ_{p}	-3.183 345 118(89
	. H. , K.	
Tau, r		2 167 77(50)10-27
tau mass ⁶	m _r	$3.167\ 77(52) \times 10^{-27}$
in u, $m_{\tau} = A_{r}(\tau)$ u (tau relative atomic mass times u)	100 - 22	$1.907\ 68(31)$
energy equivalent	$m_{\tau}c^2$	$2.847\ 05(46) \times 10^{-10}$
in MeV	1	1776.99(29)

Symbol	Numerical value	Unit	uncert. u_r
$m_e c^2$	$8.187\ 1047(14) imes 10^{-14}$	J	1.7×10 ⁻⁷
	0.510 998 918(44)	MeV	8.6×10^{-8}
$m_{\rm e}/m_{\mu}$	4.836 331 67(13)×10 ⁻³		2.6×10 ⁻⁸
	· ,		
m_{e}/m_{τ}	2.875 64(47)×10 ⁻⁴		1.6×10^{-4}
$m_{\rm e}/m_{\rm p}$	5.446 170 2173(25)×10 ⁻⁴		4.6×10^{-10}
$m_{\rm e}/m_{\rm n}$	$5.438\ 673\ 4481(38) \times 10^{-4}$		7.0×10^{-10}
$m_{\rm e}^{\prime}/m_{\rm d}^{\prime}$	2.724 437 1095(13)×10 ⁻⁴		4.8×10^{-10}
m_{e}/m_{α}	1.370 933 555 75(61)×10 ⁻⁴		4.4×10^{-10}
$-e/m_{e}$	$-1.758\ 820\ 12(15) \times 10^{11}$	$C \text{ kg}^{-1}$	8.6×10 ⁻⁸
$M(e), M_e$	5.485 799 0945(24)×10 ⁻⁷	kg mol ⁻¹	4.4×10^{-10}
	2.426 310 238(16)×10 ⁻¹²	m	6.7×10 ⁻⁹
λ_{c}			
$\lambda_{\rm c}$	386.159 2678(26)×10 ⁻¹⁵	m	6.7×10 ⁻⁹
r _e	2.817 940 325(28)×10 ⁻¹⁵	m	1.0×10^{-8}
0	0.665 245 873(13)×10 ⁻²⁸	m ²	2.0×10^{-8}
σ _e			
μ_{e}	-928.476 412(80)×10 ⁻²⁶	J T ⁻¹	8.6×10 ⁻⁸
μ_{e}/μ_{B}	-1.001 159 652 1859(38)		3.8×10^{-12}
μ_e/μ_N	-1838.281 971 07(85)		4.6×10^{-10}
a _e	1.159 652 1859(38)×10 ⁻³		3.2×10^{-9}
$g_{\rm e}$	-2.002 319 304 3718(75)		3.8×10^{-12}
μ_{e}/μ_{μ}	206.766 9894(54)		2.6×10 ⁻⁸
μ _e μ _p	-658.210 6862(66)		1.0×10^{-8}
1			
μ_{e}/μ'_{p}	-658.227 5956(71)		1.1×10^{-8}
μ_{e}/μ_{n}	960.920 50(23)		2.4×10^{-7}
μ_{e}/μ_{d}	-2 143.923 493(23)		1.1×10^{-8}
μ_{e}/μ'_{h}	864.058 255(10)		1.2×10^{-8}
	1.760 859 74(15)×10 ¹¹	$s^{-1} T^{-1}$	8.6×10 ⁻⁸
Υ _e ν /2π	28 024.9532(24)	MHz T ⁻¹	8.6×10 ⁻⁸
$\gamma_{e}^{}/2\pi$	20 024.9332(24)	101112 1	0.0×10
т	1.883 531 40(33)×10 ⁻²⁸	kg	1.7×10 ⁻⁷
m_{μ}		-	
2	0.113 428 9264(30)	u	2.6×10^{-8}
$m_{\mu}C^2$	1.692 833 60(29)×10 ⁻¹¹	J	1.7×10^{-7}
	105.658 3692(94)	MeV	8.9×10^{-8}
m_{μ}/m_{e}	206.768 2838(54)		2.6×10^{-8}
m_{μ}/m_{τ}	5.945 92(97)×10 ⁻²		1.6×10^{-4}
m_{μ}/m_{p}	0.112 609 5269(29)		2.6×10 ⁻⁸
$m_{\mu}^{\mu}/m_{n}^{\nu}$	0.112 454 5175(29)		2.6×10 ⁻⁸
$M^{\mu}(\mu), M_{\mu}$	0.113 428 9264(30)×10 ⁻³	kg mol ⁻¹	2.6×10 ⁻⁸
	11.734 441 05(30)×10 ⁻¹⁵	m	2.5×10 ⁻⁸
λ _{C,μ}	$1.867\ 594\ 298(47) \times 10^{-15}$		
$\lambda_{\rm C,\mu}$		m	2.5×10^{-8}
μ_{μ}	-4.490 447 99(40)×10 ⁻²⁶	J T ⁻¹	8.9×10 ⁻⁸
μ_{μ}/μ_{B}	-4.841 970 45(13)×10 ⁻³		2.6×10^{-8}
μ_{μ}/μ_{N}	-8.890 596 98(23)		2.6×10^{-8}
α _u	$1.165\ 919\ 81(62) \times 10^{-3}$		5.3×10 ⁻⁷
g_{μ}	-2.002 331 8396(12)		6.2×10^{-10}
μ_{μ}/μ_{p}	-3.183 345 118(89)		2.8×10^{-8}
тр			
m_{τ}	3.167 77(52)×10 ⁻²⁷	kg	1.6×10^{-4}
-	1.907 68(31)	u	1.6×10^{-4}
$m_{\tau}c^2$	2.847 05(46)×10 ⁻¹⁰	J	1.6×10^{-4}
τ	1776.99(29)	, MeV	1.6×10 ⁻⁴
m /m		1110 1	1.6×10^{-4}
m_{τ}/m_{e}	3477.48(57)		
m_{τ}/m_{μ}	16.8183(27)		1.6×10 ⁻⁴
$m_{_{\rm T}}/m_{_{\rm p}}$	1.893 90(31)		1.6×10^{-4}
m_{τ}/m_{n}	1.891 29(31)		1.6×10^{-4}
$M(\tau)$, $M_{_{ au}}$	1.907 68(31)×10 ⁻³	kg mol ⁻¹	1.6×10^{-4}
$\lambda_{C,\tau}$	0.697 72(11)×10 ⁻¹⁵	m	1.6×10^{-4}
	$0.111\ 046(18) \times 10^{-15}$	m	1.6×10^{-4}
$\lambda_{\rm C,\tau}$	0.111 010(10/×10	m	1.0/10

Relative std.

uncert. u_r

Unit

	~ • •			Relative std.
Quantity	Symbol	Numerical value	Unit	uncert. u_r
Proton, p		1 672 621 71(20), 10-27	lea.	1 7.10-7
proton mass in $u_{m} = A(p) u_{n}$ (proton relative atomic mass times u)	m _p	1.672 621 71(29)×10 ⁻²⁷ 1.007 276 466 88(13)	kg u	1.7×10^{-7} 1.3×10^{-10}
in u, $m_p = A_r(p)$ u (proton relative atomic mass times u) energy equivalent	$m_{\rm p}c^2$	1.503 277 43(26)×10 ⁻¹⁰	J	1.3×10^{-7}
in MeV	mpc	938.272 029(80)) MeV	8.6×10 ⁻⁸
proton-electron mass ratio	$m_{\rm p}/m_{\rm e}$	1836.152 672 61(85)	1110 1	4.6×10^{-10}
proton-muon mass ratio	m_p/m_μ	8.880 243 33(23)		2.6×10 ⁻⁸
proton-tau mass ratio	$m_{\rm p}/m_{\rm r}$	0.528 012(86)		1.6×10^{-4}
proton-neutron mass ratio	$m_{\rm p}^{\rm p}/m_{\rm n}^{\rm T}$	0.998 623 478 72(58)		5.8×10^{-10}
proton charge to mass quotient	e/m_{p}	9.578 833 76(82)×107	C kg ⁻¹	8.6×10^{-8}
proton molar mass $N_A m_p$	$M(\mathbf{p}), M_{\mathbf{p}}$	1.007 276 466 88(13)×10 ⁻³	kg mol ⁻¹	1.3×10^{-10}
proton Compton wavelength $h/m_{\rm p}c$	λ _{C,p}	$1.321\ 409\ 8555(88) \times 10^{-15}$	m	6.7×10 ⁻⁹
$\lambda_{c,p}/2\pi$	$\lambda_{C,P}^{C,P}$	$0.210\ 308\ 9104(14) \times 10^{-15}$	m	6.7×10 ⁻⁹
proton rms charge radius	R _p	$0.8750(68) \times 10^{-15}$	m	7.8×10^{-3}
proton magnetic moment	μ_{p}	$1.410\ 606\ 71(12) \times 10^{-26}$	J T ⁻¹	8.7×10^{-8}
to Bohr magneton ratio	μ_{p}/μ_{B}	$1.521\ 032\ 206(15) \times 10^{-3}$		1.0×10^{-8}
to nuclear magneton ratio	μ_p/μ_N	2.792 847 351(28)		1.0×10^{-8}
proton g-factor $2\mu_p/\mu_N$	$g_{\rm p}$	5.585 694 701(56)		1.0×10^{-8}
proton-neutron magnetic moment ratio	μ_p/μ_n	-1.459 898 05(34)		2.4×10^{-7}
shielded proton magnetic moment (H $_2 \rm O,$ sphere, 25°C)	μ'_{P}	$1.410\ 570\ 47(12) \times 10^{-26}$	J T ⁻¹	8.7×10^{-8}
to Bohr magneton ratio	$\mu_{\scriptscriptstyle P}^{\prime}/\mu_{\scriptscriptstyle B}$	1.520 993 132(16)×10 ⁻³		1.1×10^{-8}
to nuclear magneton ratio	$\mu_{\scriptscriptstyle P}^{\prime}/\mu_{\scriptscriptstyle N}$	2.792 775 604(30)		1.1×10^{-8}
proton magnetic shielding correction $1-\mu_{ m P}'/\mu_{ m P}$ (H ₂ O, sphere, 25°C)	σ'_{P}	25.689(15)×10 ⁻⁶		5.7×10^{-4}
proton gyromagnetic ratio $2\mu_p/\hbar$	$\gamma_{\rm P}$	2.675 222 05(23)×108	$s^{-1} T^{-1}$	8.6×10^{-8}
	$\gamma_{\rm p}/2\pi$	42.577 4813(37)	MHz T ⁻¹	8.6×10^{-8}
shielded proton gyromagnetic ratio $2\mu_p'/\hbar$ (H2O, sphere, 25°C)	$\gamma'_{\rm P}$	2.675 153 33(23)×108	$s^{-1} T^{-1}$	8.6×10 ⁻⁸
	$\gamma_{\rm P}'/2\pi$	42.576 3875(37)	MHz T ⁻¹	8.6×10 ⁻⁸
Neutron, n				
neutron mass	m _n	1.674 927 28(29)×10 ⁻²⁷	kg	1.7×10^{-7}
in u, $m_n = A_r$ (n) u (neutron relative atomic mass times u)		1.008 664 915 60(55)	u	5.5×10^{-10}
energy equivalent	$m_n c^2$	$1.505\ 349\ 57(26) \times 10^{-10}$	J	1.7×10^{-7}
in MeV		939.565 360(81)	MeV	8.6×10^{-8}
neutron-electron mass ratio	m_n/m_e	1838.683 6598(13)		7.0×10^{-10}
neutron-muon mass ratio	m_n/m_μ	8.892 484 02(23)		2.6×10^{-8}
neutron-tau mass ratio	m_n/m_{τ}	0.528 740(86)		1.6×10^{-4}
neutron-proton mass ratio	m_n/m_p	1.001 378 418 70(58)		5.8×10 ⁻¹⁰
neutron molar mass $N_{\rm A}m_{\rm n}$	$M(n), M_n$	1.008 664 915 60(55)×10 ⁻³	kg mol ⁻¹	5.5×10^{-10}
neutron Compton wavelength $h/m_{\rm n}c$	$\lambda_{C,n}$	1.319 590 9067(88)×10 ⁻¹⁵	m	6.7×10^{-9}
$\lambda_{C,n}/2\pi$	$\lambda_{\mathrm{C,n}}$	$0.210\ 019\ 4157(14) \times 10^{-15}$	m L T-l	6.7×10 ⁻⁹
neutron magnetic moment	μ_n	$-0.966\ 236\ 45(24) \times 10^{-26}$	J T ⁻¹	2.5×10 ⁻⁷
to Bohr magneton ratio	μ_n/μ_B	$-1.041\ 875\ 63(25) \times 10^{-3}$		2.4×10 ⁻⁷ 2.4×10 ⁻⁷
to nuclear magneton ratio neutron g-factor $2\mu_o/\mu_N$	μ_n/μ_N	-1.913 042 73(45) -3.826 085 46(90)		
neutron-electron magnetic moment ratio	g_n	-3.820 083 40(90) 1.040 668 82(25)×10 ⁻³		2.4×10 ⁻⁷ 2.4×10 ⁻⁷
neutron-proton magnetic moment ratio	μ_n/μ_e	-0.684 979 34(16)		2.4×10^{-7}
	μ_n/μ_p			
neutron to shielded proton magnetic moment ratio (H_2O , sphere, 25°C)	μ_n/μ_P'	-0.68499694(16)	-1 77-1	2.4×10^{-7}
neutron gyromagnetic ratio $2 \mu_n /\hbar$	γ_n	$1.832\ 471\ 83(46) \times 10^8$ 29.164\ 6950(73)	s ⁻¹ T ⁻¹ MHz T ⁻¹	2.5×10 ⁻⁷ 2.5×10 ⁻⁷
	$\gamma_n/2\pi$	29.104 0950(75)	IVII IZ I	2.5×10
Deuteron, d				
deuteron mass	m _d	3.343 583 35(57)×10 ⁻²⁷	kg	1.7×10 ⁻⁷
in u, $m_{\rm d} = A_{\rm r}({\rm d})$ u (deuteron relative atomic mass times u)	2	2.013 553 212 70(35)	u	1.7×10^{-10}
energy equivalent	$m_{\rm d}c^2$	$3.005\ 062\ 85(51) \times 10^{-10}$	J	1.7×10 ⁻⁷
in MeV	,	1875.612 82(16)	MeV	8.6×10^{-8}
deuteron-electron mass ratio	$m_{\rm d}/m_{\rm e}$	3670.482 9652(18)		4.8×10^{-10}
deuteron-proton mass ratio	$m_{\rm d}/m_{\rm p}$	1.999 007 500 82(41)	1 cg ma - 1-1	2.0×10^{-10} 1.7.10 ⁻¹⁰
deuteron molar mass $N_A m_d$ deuteron rms charge radius	$M(d), M_d$	2.013 553 212 70(35)×10 ⁻³ 2.1394(28)×10 ⁻¹⁵	kg mol ⁻¹	1.7×10^{-10} 1.3×10^{-3}
dedeton mis charge radius	R _d	2.1077(20)~10	m	1.3^10

				Relative std.
Quantity	Symbol	Numerical value	Unit	uncert. <i>u</i> _r
deuteron magnetic moment	μ_{d}	0.433 073 482(38)×10 ⁻²⁶	J T ⁻¹	8.7×10^{-8}
to Bohr magneton ratio	μ_d/μ_B	0.466 975 4567(50)×10 -3		1.1×10^{-8}
to nuclear magneton ratio	μ_d/μ_N	0.857 438 2329(92)		1.1×10^{-8}
deuteron-electron magnetic moment ratio	μ_d/μ_e	$-4.664\ 345\ 548(50) \times 10^{-4}$		1.1×10^{-8}
deuteron-proton magnetic moment ratio	μ_d/μ_p	0.307 012 2084(45)		1.5×10^{-8}
deuteron-neutron magnetic moment ratio	μ_d/μ_n	-0.448 206 52(11)		2.4×10^{-7}
Helion, h				
helion mass ⁵	$m_{\rm h}$	5.006 412 14(86)×10 ⁻²⁷	kg	1.7×10^{-7}
in u, $m_{\rm h} = A_{\rm r}({\rm h})$ u (helion relative atomic mass times u)		3.014 932 2434(58)	u	1.9×10^{-9}
energy equivalent	$m_{\rm h}c^2$	4.499 538 84(77)×10 ⁻¹⁰	J	1.7×10^{-7}
in MeV		2808.391 42(24)	MeV	8.6×10 ⁻⁸
helion-electron mass ratio	$m_{\rm h}/m_{\rm e}$	5495.885 269(11)		2.0×10^{-9}
helion-proton mass ratio	$m_{\rm h}/m_{\rm p}$	2.993 152 6671(58)	1 1-1	1.9×10^{-9}
helion molar mass $N_{\rm A}m_{\rm h}$	$M(\mathrm{h})$, M_{h}	3.014 932 2434(58)×10 ⁻³	kg mol ⁻¹	1.9×10^{-9}
shielded helion magnetic moment (gas, sphere, 25°C)	μ'_{h}	-1.074 553 024(93)×10 -26	J T-1	8.7×10^{-8}
to Bohr magneton ratio	$\mu_{\rm h}^{\prime}/\mu_{\rm B}$	$-1.158\ 671\ 474(14) \times 10^{-3}$		1.2×10^{-8}
to nuclear magneton ratio	$\mu_{\rm h}^{\prime}/\mu_{\rm N}$	-2.127 497 723(25)		1.2×10^{-8}
shielded helion to proton magnetic moment ratio (gas, sphere, 25°C)	$\mu'_{\rm h}/\mu_{ m P}$	-0.761 766 562(12)		1.5×10^{-8}
shielded helion to shielded proton magnetic moment ratio	$\mu_{\rm h}'/\mu_{\rm P}'$			
$(gas/H_2O, spheres, 25^{\circ}C)$		-0.761 786 1313(33)		4.3×10^{-9}
shielded helion gyromagnetic ratio $2 \mu_{h}' h$ (gas, sphere, 25°C)	$\gamma'_{ m h}$	2.037 894 70(18)×108	$s^{-1} T^{-1}$	8.7×10^{-8}
	$\gamma_{ m h}'/2\pi$	32.434 1015(28)	$MHz \ T^{-1}$	8.7×10^{-8}
Alpha particle, α				
alpha particle mass	m _a	6.644 6565(11)×10 ⁻²⁷	kg	1.7×10^{-7}
in u, $m_{\alpha} = A_{r}(\alpha)$ u (alpha particle relative atomic mass times u)	u	4.001 506 179 149(56)	u	1.4×10^{-11}
energy equivalent	$m_{\alpha}c^2$	5.971 9194(10)×10 ⁻¹⁰	J	1.7×10^{-7}
in MeV		3727.379 17(32)	MeV	8.6×10^{-8}
alpha particle to electron mass ratio	m_{α}/m_{e}	7294.299 5363(32)		4.4×10^{-10}
alpha particle to proton mass ratio	m_{α}/m_{p}	3.972 599 689 07(52)		1.3×10^{-10}
alpha particle molar mass $N_{_{\rm A}}m_{_{lpha}}$	$M(\alpha)$, $M_{_{lpha}}$	4.001 506 179 149(56)×10 ⁻³	kg mol ⁻¹	1.4×10^{-11}
Physico-Chemical				
Avogadro constant	$N_{_{\mathrm{A}}}$, L	6.022 1415(10)×10 ²³	mol ⁻¹	1.7×10 ⁻⁷
atomic mass constant $m_{\rm u} = (1/12)m(^{12}{\rm C}) = 1 \text{ u} = 10^{-3} \text{ kg mol}^{-1}/N_{\rm A}$	m	1.660 538 86(28)×10 ⁻²⁷	kg	1.7×10^{-7}
energy equivalent	$m_{\mu}c^{2}$	1.492 417 90(26)×10 ⁻¹⁰	J	1.7×10^{-7}
in MeV		931.494 043(80)	MeV	8.6×10^{-8}
Faraday constant ⁷ N _A e	F	96 485.3383(83)	C mol ⁻¹	8.6×10^{-8}
molar Planck constant	$N_{A}h$	3.990 312 716(27) ×10 ⁻¹⁰	J s mol ⁻¹	6.7×10 ⁻⁹
	$N_{A}hc$	0.119 626 565 72(80)	J m mol ⁻¹	6.7×10 ⁻⁹
molar gas constant	R	8.314 472(15)	J mol ⁻¹ K ⁻¹	1.7×10 ⁻⁶
Boltzmann constant R/N_{A}	k	$1.380\ 6505(24) \times 10^{-23}$	J K ⁻¹	1.8×10^{-6}
in eV K ⁻¹	1 /1	$8.617\ 343(15) \times 10^{-5}$	eV K ⁻¹	1.8×10 ⁻⁶
	k/h	$2.083\ 6644(36) \times 10^{10}$	Hz K ⁻¹	1.7×10^{-6}
molar volume of ideal gas RT/p	k/hc	69.503 56(12)	$m^{-1} K^{-1}$	1.7×10^{-6}
T = 273.15 K, p = 101.325 kPa	$V_{\rm m}$	22.413 996(39) ×10-3	m ³ mol ⁻¹	1.7×10 ⁻⁶
Loschmidt constant $N_{\rm A}/V_{\rm m}$	n_0^{m}	$2.686\ 7773(47) \times 10^{25}$	m ⁻³	1.7×10^{-6} 1.8×10^{-6}
T = 273.15 K, p = 100 kPa	$V_{\rm m}$	$22.710\ 981(40) \times 10^{-3}$	$m^3 mol^{-1}$	1.7×10^{-6}
Sackur-Tetrode constant (absolute entropy constant) ⁸	'n			
$5/2 + \ln[(2\pi m_{\rm u} kT_{\rm l}/h^2)^{3/2} kT_{\rm l}/p_{\rm 0}]$				
$T_1 = 1$ K, $p_0 = 100$ kPa	S_0/R	-1.151 7047(44)		3.8×10^{-6}
$T_1 = 1$ K, $p_0 = 101.325$ kPa		-1.164 8677(44)		3.8×10^{-6}
Stefan-Boltzmann constant $(\pi^2/60)k^4/\hbar^3c^2$	σ	5.670 400(40)×10 -8	$W \ m^{-2} \ K^{-4}$	7.0×10^{-6}
first radiation constant $2\pi hc^2$	c_1	3.741 771 38(64)×10 ⁻¹⁶	$W m^2$	1.7×10 ⁻⁷
first radiation constant for spectral radiance $2hc^2$	$c_{_{1L}}$	$1.191\ 042\ 82(20) \times 10^{-16}$	$W m^2 sr^{-1}$	1.7×10 ⁻⁷
second radiation constant hc/k	C ₂	$1.438\ 7752(25) \times 10^{-2}$	m K	1.7×10 ⁻⁶
Wien displacement law constant $b = \lambda_{max} T = c_2/4.965 \ 114 \ 231$	b	2.897 7685(51)×10 -3	m K	1.7×10^{-6}

¹ See the "Adopted values" table for the conventional value adopted internationally for realizing representations of the volt using the Josephson effect.

² See the "Adopted values" table for the conventional value adopted internationally for realizing representations of the ohm using the quantum Hall effect.

³ Value recommended by the Particle Data Group (Hagiwara *et al.*, 2002).

- ⁴ Based on the ratio of the masses of the W and Z bosons m_w/m_z recommended by the Particle Data Group (Hagiwara et al., 2002). The value for $\sin^2\theta_w$ they recommend, which is based on a particular variant of the modified minimal subtraction (\overline{MS}) scheme, is $\sin^2\hat{\theta}_w(M_z) = 0.231$ 24(24).
- ⁵ The helion, symbol h, is the nucleus of the ³He atom.
- ⁶ This and all other values involving *m*, are based on the value of *m*, *c*² in MeV recommended by the Particle Data Group (Hagiwara et al., 2002), but with a standard uncertainty of 0.29 MeV rather than the quoted uncertainty of –0.26 MeV, +0.29 MeV.
- ⁷ The numerical value of *F* to be used in coulometric chemical measurements is 96 485.336(16) $[1.7 \times 10^{-7}]$ when the relevant current is measured in terms of representations of the volt and ohm based on the Josephson and quantum Hall effects and the internationally adopted conventional values of the Josephson and von Klitzing constants K_{1-90} and R_{K-90} given in the "Adopted values" table.
- ⁸ The entropy of an ideal monoatomic gas of relative atomic mass A_r is given by $S = S_0 + (3/2)R \ln A_r R \ln(p/p_0) + (5/2)R \ln(T/K)$.

TABLE III. Internationally Adopted Values of Various Quantities

Quantity	Symbol	Numerical value	Unit	Relative std. uncert. u_r
molar mass of ¹² C	$M(^{12}C)$	12×10^{-3}	kg mol ⁻¹	(exact)
molar mass constant $M(^{12}C)/12$	$M_{\rm u}$	1×10^{-3}	kg mol ⁻¹	(exact)
conventional value of Josephson constant	K_{1-90}	483 597.9	$GHz \ V^{-1}$	(exact)
conventional value of von Klitzing constant	R_{K-90}	25 812.807	Ω	(exact)
standard atmosphere		101 325	Pa	(exact)
standard acceleration of gravity	g _n	9.806 65	$m s^{-2}$	(exact)

TABLE IV. The Values of Some Energy Equivalents Derived From the Relations $E = mc^2 = hc/\lambda = hv = kT$, andBased on the 2002 CODATA Adjustment of the Values of the Constants

1 eV = (e/C) J, 1 u = $m_u = (1/12)m(^{12}C) = 10^{-3}$ kg mol⁻¹/ N_A , and $E_h = 2R_{\infty}hc = \alpha^2 m_e c^2$ is the Hartree Energy (hartree)

		Releva	nt unit	
	J	kg	m ⁻¹	Hz
1 J	(1 J) = 1 J	$(1 \text{ J})/c^2 = 1.112 650 056 \times 10^{-17} \text{ kg}$	(1 J)/hc = 5.034 117 20(86)×10 ²⁴ m ⁻¹	$(1 \text{ J})/h = 1.509 \text{ 190 } 37(26) \times 10^{33} \text{ Hz}$
1 kg	$(1 \text{ kg})c^2 = 8.987 551 787 \times 10^{16} \text{ J}$	(1 kg) = 1kg	(1 kg)c/h = 4.524 438 91(77)×10 ⁴¹ m ⁻¹	$(1 \text{ kg})c^2/h =$ 1.356 392 66(23)×10 ⁵⁰ Hz
1 m ⁻¹	(1 m ⁻¹) <i>hc</i> = 1.986 445 61(34)×10 ⁻²⁵ J	$(1 \text{ m}^{-1})h/c =$ 2.210 218 81(38)×10 ⁻⁴² kg	$(1 \text{ m}^{-1}) = 1 \text{ m}^{-1}$	$(1 \text{ m}^{-1})c = 299\ 792\ 458\ \text{Hz}$
1 Hz	$(1 \text{ Hz})h = 6.626\ 0693(11) \times 10^{-34} \text{ J}$	$(1 \text{ Hz})h/c^2 =$ 7.372 4964(13)×10 ⁻⁵¹ kg	$(1 \text{ Hz})/c = 3.335 640 952 \times 10^{-9} \text{ m}^{-1}$	(1 Hz) = 1 Hz
1 K	$(1 \text{ K})k = 1.380 6505(24) \times 10^{-23} \text{ J}$	$(1 \text{ K})k/c^2 = 1.536 \ 1808(27) \times 10^{-40} \text{ kg}$	$(1 \text{ K})k/hc = 69.503 \ 56(12) \ \text{m}^{-1}$	$(1 \text{ K})k/h = 2.083 6644(36) \times 10^{10} \text{ Hz}$
1 eV	(1 eV) =1.602 176 53(14) ×10 ⁻¹⁹ J	(1 eV)/ <i>c</i> ² = 1.782 661 81(15)×10 ⁻³⁶ kg	(1 eV)/ <i>hc</i> = 8.065 544 45(69)×10 ⁵ m ⁻¹	(1 eV)/ <i>h</i> = 2.417 989 40(21)×10 ¹⁴ Hz
1 u	$(1 \text{ u})c^2 = 1.492 417 90(26) \times 10^{-10} \text{ J}$	$(1 \text{ u}) = 1.660 538 86(28) \times 10^{-27} \text{ kg}$	(1 u)c/h = 7.513 006 608(50) ×10 ¹⁴ m ⁻¹	$(1 \text{ u})c^2/h =$ 2.252 342 718(15)×10 ²³ Hz
$1 E_{\rm h}$	$(1 E_{\rm h}) = 4.359 \ 744 \ 17(75) \times 10^{-18} \ {\rm J}$	$(1 E_{\rm h})/c^2 =$ 4.850 869 60(83) ×10 ⁻³⁵ kg	$(1 E_{\rm h})/hc = 2.194 746 313$ 705(15)×10 ⁷ m ⁻¹	$(1 E_{\rm h})/h =$ 6.579 683 920 721(44)×10 ¹⁵ Hz

TABLE V. The Values of Some Energy Equivalents Derived From the Relations $E = mc^2 = hc/\lambda = hv = kT$, and Based on the 2002 CODATA Adjustment of the Values of the Constants

1 eV = (e/C) J, 1 u = $m_{\rm p}$ = (1/12)m(¹²C) = 10⁻³ kg mol⁻¹/ $N_{\rm A}$, and $E_{\rm b} = 2R_{\infty}hc = \alpha^2 m_e c^2$ is the Hartree Energy (hartree)

	Relevant unit						
	K	eV	u	E			
1 J	$(1 \text{ J})/k = 7.242 963(13) \times 10^{22} \text{ K}$	$(1 \text{ J}) = 6.241 509 47(53) \times 10^{18} \text{ eV}$	$(1 \text{ J})/c^2 = 6.700 5361(11) \times 10^9 \text{ u}$	$(1 \text{ J}) = 2.293 712 57(39) \times 10^{17} E_{\text{h}}$			
1 kg	$(1 \text{ kg})c^2/k = 6.509 650(11) \times 10^{39} \text{ K}$	$(1 \text{ kg})c^2 = 5.609 588 96(48) \times 10^{35} \text{ eV}$	$(1 \text{ kg}) = 6.022 \ 1415(10) \times 10^{26} \text{ u}$	$(1 \text{ kg})c^2 = 2.061 486 05(35) \times 10^{34} E_{\text{h}}$			
$1 {\rm m}^{-1}$	$(1 \text{ m}^{-1})hc/k =$ 1.438 7752(25)×10 ⁻² K	(1 m ⁻¹) <i>hc</i> = 1.239 841 91(11)×10 ⁻⁶ eV	$(1 \text{ m}^{-1})h/c =$ 1.331 025 0506(89) ×10 ⁻¹⁵ u	$(1 \text{ m}^{-1})hc =$ 4.556 335 252 760(30) ×10 ⁻⁸ E _b			
1 Hz	(1 Hz) <i>h/k</i> = 4.799 2374(84)×10 ⁻¹¹ K	(1 Hz)h = 4.135 667 43(35)×10 ⁻¹⁵ eV	$(1 \text{ Hz})h/c^2 =$ 4.439 821 667(30)×10 ⁻²⁴ u	(1 Hz)h = 1.519 829 846 006(10)×10 ⁻¹⁶ E _h			
1 K	(1 K) = 1 K	$(1 \text{ K})k = 8.617 343(15) \times 10^{-5} \text{ eV}$	$(1 \text{ K})k/c^2 = 9.251 \ 098(16) \times 10^{-14} \text{ u}$	$(1 \text{ K})k = 3.166 \ 8153(55) \times 10^{-6} E_{\text{h}}$			
1 eV	$(1 \text{ eV})/k = 1.160 4505(20) \times 10^4 \text{ K}$	(1 eV) = 1 eV	(1 eV)/ <i>c</i> ² = 1.073 544 171(92)×10 ⁻⁹ u	$(1 \text{ eV}) = 3.674 932 45(31) \times 10^{-2} E_{\text{h}}$			
1 u 1 <i>E</i> _h	$(1 \text{ u})c^2/k = 1.080 9527(19) \times 10^{13} \text{ K}$ $(1 E_h)/k = 3.157 7465(55) \times 10^5 \text{ K}$	$(1 \text{ u})c^2 = 931.494 043(80) \times 10^6 \text{ eV}$ $(1 E_h) = 27.211 3845(23) \text{ eV}$	(1 u) = 1 u (1 $E_{\rm h}$)/ c^2 = 2.921 262 323(19)×10 ⁻⁸ u	$\begin{array}{l} (1 \ \mathrm{u})c^2 = 3.423 \ 177 \ 686(23) \times 10^7 \ E_\mathrm{h} \\ (1 \ E_\mathrm{h}) = 1 \ E_\mathrm{h} \end{array}$			

FUNDAMENTAL PHYSICAL CONSTANTS - FREQUENTLY USED CONSTANTS

Quantity	Symbol	Value	Unit	Relative std. uncert. u_{r}
speed of light in vacuum	<i>C</i> , <i>C</i> ₀	299 792 458	$m s^{-1}$	(exact)
magnetic constant	μ_{o}	$4\pi \times 10^{-7}$	N A ⁻²	
		= 12.566 370 614 $\times 10^{-7}$	N A ⁻²	(exact)
electric constant $1/\mu_0 c^2$	ε ₀	$8.854\ 187\ 817\times 10^{_{-12}}$	$F m^{-1}$	(exact)
Newtonian constant of gravitation	G	$6.6742(10) imes 10^{-11}$	${ m m}^3kg^{-1}s^{-2}$	$1.5 imes10^{-4}$
Plank constant	h	$6.626\ 0693(11) imes 10^{-34}$	Js	$1.7 imes10^{-7}$
$h/2\pi$	\hbar	$1.054\ 571\ 68(18)\times 10^{_{-34}}$	Js	$1.7 imes 10^{-7}$
elementary charge	е	$1.602\ 176\ 53(14) imes 10^{-19}$	С	$8.5 imes10^{-8}$
magnetic flux quantum $h/2e$	φ₀	$2.067\ 833\ 72(18) imes10^{-15}$	Wb	$8.5 imes10^{-8}$
conductance quantum $2e^2/h$	$G_{_0}$	$7.748\ 091\ 733(26) \times 10^{\scriptscriptstyle -5}$	S	$3.3 imes10^{-9}$
electron mass	m _e	$9.109\ 3826(16) imes 10^{-31}$	kg	$1.7 imes 10^{-7}$
proton mass	m _p	$1.672\ 621\ 71(29) imes10^{-27}$	kg	$1.7 imes10^{-7}$
proton-electron mass ratio	$m_{\rm p}/m_{\rm e}$	1836.152 672 61(85)		$4.6 imes 10^{-10}$
fine-structure constant $e^2/4\pi\epsilon_0\hbar c$	α	$7.297\;352\;568(24) imes 10^{-3}$		$3.3 imes 10^{-9}$
inverse fine-structure constant	α^{-1}	137.035 999 11(46)		3.3×10^{-9}
Rydberg constant $\alpha^2 m_e c/2h$	$R_{_{\infty}}$	10 973 731.568 525(73)	m^{-1}	$6.6 imes 10^{-12}$
Avogadro constant	N _A , L	$6.022\ 1415(10) imes 10^{23}$	mol^{-1}	$1.7 imes 10^{-7}$
Faraday constant $N_A e$	F	96 485.3383(83)	C mol ⁻¹	$8.6 imes10^{-8}$
molar gas constant	R	8.314 472(15)	J mol ⁻¹ K ⁻¹	$1.7 imes10^{-6}$
Boltzmann constant R/N_A	k	$1.380\ 6505(24) imes 10^{-23}$	J K ⁻¹	$1.8 imes10^{-6}$
Stefan-Boltzmann constant ($\pi^2/60)k^4/\hbar^3c^2$	σ	$5.670\;400(40) imes10^{-8}$	$W \ m^{-2} \ K^{-4}$	$7.0 imes10^{-6}$
	Non-SI u	units accepted for use with the SI		
electron volt: (e/C) J	eV	$1.602\ 176\ 53(14) imes 10^{-19}$	J	$8.5 imes10^{-8}$
(unified) atomic mass unit 1 u= $m_u = \frac{1}{12}m(^{12}C) = 10^{-3} \text{ kg mol}^{-1}/N_A$	u	$1.660\;538\;86(28) imes10^{-27}$	kg	1.7×10^{-7}

ī

This table of atomic weights includes the changes made in 2005 by the IUPAC Commission on Isotopic Abundances and Atomic Weights. Those changes affected the following elements: Al, Au, Bi, Co, Cs, La, Mn, Na, Nd, P, Pt, Sm, Sc, Ta, Tb, and Th.

The Standard Atomic Weights apply to the elements as they exist naturally on Earth, and the uncertainties take into account the isotopic variation found in most laboratory samples. Further comments on the variability are given in the footnotes.

The number in parentheses following the atomic weight value gives the uncertainty in the last digit. An atomic weight entry in brackets indicates that the element that has no stable isotopes; the value given is the atomic mass in u (or the mass number, if the mass is not accurately known) for the isotope of longest half-life. Thorium, protactinium, and uranium have no stable isotopes, but the terrestrial isotopic composition is sufficiently uniform to permit a standard atomic weight to be specified.

References

1. Chemistry International, Vol. 27, No. 6, p.18, 2005.

2. Coplen, T. D., Pure Appl. Chem. 73, 667, 2001.

3. Coplen, T. D., J. Phys. Chem. Ref. Data, 30, 701, 2001.

Name	Symbol	Atomic no.	Atomic weight	Footnotes
Actinium	Ac	89	[227.0277]	а
Aluminum	Al	13	26.9815386(8)	
Americium	Am	95	[243.0614]	a
Antimony	Sb	51	121.760(1)	g
Argon	Ar	18	39.948(1)	gr
Arsenic	As	33	74.92160(2)	-
Astatine	At	85	[209.9871]	а
Barium	Ba	56	137.327(7)	
Berkelium	Bk	97	[247.0703]	а
Beryllium	Be	4	9.012182(3)	
Bismuth	Bi	83	208.98040(1)	
Bohrium	Bh	107	[264.12]	а
Boron	В	5	10.811(7)	g m r
Bromine	Br	35	79.904(1)	-
Cadmium	Cd	48	112.411(8)	g
Calcium	Ca	20	40.078(4)	g
Californium	Cf	98	[251.0796]	a
Carbon	С	6	12.0107(8)	gr
Cerium	Ce	58	140.116(1)	g
Cesium	Cs	55	132.9054519(2)	-
Chlorine	Cl	17	35.453(2)	g m r
Chromium	Cr	24	51.9961(6)	
Cobalt	Со	27	58.933195(5)	
Copper	Cu	29	63.546(3)	r
Curium	Cm	96	[247.0704]	a
Darmstadtium	Ds	110	[271]	a
Dubnium	Db	105	[262.1141]	a
Dysprosium	Dy	66	162.500(1)	g
Einsteinium	Es	99	[252.0830]	a
Erbium	Er	68	167.259(3)	g
Europium	Eu	63	151.964(1)	g
Fermium	Fm	100	[257.0951]	a
Fluorine	F	9	18.9984032(5)	
Francium	Fr	87	[223.0197]	а
Gadolinium	Gd	64	157.25(3)	g
Gallium	Ga	31	69.723(1)	
Germanium	Ge	32	72.64(1)	
Gold	Au	79	196.966569(4)	
Hafnium	Hf	72	178.49(2)	
Hassium	Hs	108	[277]	а
Helium	He	2	4.002602(2)	g r
Holmium	Ho	67	164.93032(2)	
Hydrogen	Н	1	1.00794(7)	g m r
Indium	In	49	114.818(3)	

Name	Symbol	Atomic no.	Atomic weight	Footnotes
Iodine	Ι	53	126.90447(3)	
Iridium	Ir	77	192.217(3)	
Iron	Fe	26	55.845(2)	
Krypton	Kr	36	83.798(2)	g m
Lanthanum	La	57	138.90547(7)	g
Lawrencium	Lr	103	[262.1097]	а
Lead	Pb	82	207.2(1)	g r
Lithium	Li	3	6.941(2)	b g m r
Lutetium	Lu	71	174.967(1)	g
Magnesium	Mg	12	24.3050(6)	
Manganese	Mn	25	54.938045(5)	
Meitnerium	Mt	109	[268.1388]	а
Mendelevium	Md	101	[258.0984]	а
Mercury	Hg	80	200.59(2)	
Molybdenum	Mo	42	95.94(2)	g
Neodymium	Nd	60	144.242(3)	g
Neon	Ne	10	20.1797(6)	g m
Neptunium	Np	93	[237.0482]	a
Nickel	Ni	28	58.6934(2)	
Niobium	Nb	41	92.90638(2)	
Nitrogen	Ν	7	14.0067(2)	g r
Nobelium	No	102	[259.1010]	a
Osmium	Os	76	190.23(3)	g
Oxygen	0	8	15.9994(3)	g r
Palladium	Pd	46	106.42(1)	g
Phosphorus	Р	15	30.973762(2)	
Platinum	Pt	78	195.084(9)	
Plutonium	Pu	94	[244.0642]	а
Polonium	Ро	84	[208.9824]	а
Potassium	Κ	19	39.0983(1)	g
Praseodymium	Pr	59	140.90765(2)	
Promethium	Pm	61	[144.9127]	а
Protactinium	Pa	91	231.03588(2)	
Radium	Ra	88	[226.0254]	а
Radon	Rn	86	[222.0176]	а
Rhenium	Re	75	186.207(1)	
Rhodium	Rh	45	102.90550(2)	
Roentgenium	Rg	111	[272.1535]	а
Rubidium	Rb	37	85.4678(3)	g
Ruthenium	Ru	44	101.07(2)	g
Rutherfordium	Rf	104	[261.1088]	а
Samarium	Sm	62	150.36(2)	g
Scandium	Sc	21	44.955912(6)	
Seaborgium	Sg	106	[266.1219]	а

Standard Atomic Weights (2005)

Name	Symbol	Atomic no.	Atomic weight	Footnotes	Name	Symbol	Atomic no.	Atomic weight	Footnotes
Selenium	Se	34	78.96(3)	r	Tin	Sn	50	118.710(7)	g
Silicon	Si	14	28.0855(3)	r	Titanium	Ti	22	47.867(1)	
Silver	Ag	47	107.8682(2)	g	Tungsten	W	74	183.84(1)	
Sodium	Na	11	22.98976928(2)		Ununbium	Uub	112	[285]	а
Strontium	Sr	38	87.62(1)	g r	Ununhexium	Uuh	116	[289]	а
Sulfur	S	16	32.065(5)	g r	Ununquadium	Uuq	114	[289]	а
Tantalum	Та	73	180.94788(2)		Uranium	U	92	238.02891(3)	g m
Technetium	Тс	43	[97.9072]	а	Vanadium	V	23	50.9415(1)	
Tellurium	Te	52	127.60(3)	g	Xenon	Xe	54	131.293(6)	g m
Terbium	Tb	65	158.92535(2)		Ytterbium	Yb	70	173.04(3)	g
Thallium	Tl	81	204.3833(2)		Yttrium	Y	39	88.90585(2)	
Thorium	Th	90	232.03806(2)	g	Zinc	Zn	30	65.409(4)	
Thulium	Tm	69	168.93421(2)		Zirconium	Zr	40	91.224(2)	g

^a No stable isotope exists. The atomic mass in u (or the mass number, if the mass is not accurately known) is given in brackets for the isotope of longest half-life.

^b Commercially available Li materials have atomic weights that range between 6.939 and 6.996; if a more accurate value is required, it must be determined for the specific material.

⁵ Geological specimens are known in which the element has an isotopic composition outside the limits for the normal material. The difference between the atomic weight of the element in such specimens and that given in the table may exceed the stated uncertainty.

^m Modified isotopic compositions may be found in commercially available material because it has been subject to an undisclosed or inadvertent isotopic fractionation. Substantial deviations in atomic weight of the element from that given in the table can occur.

^r Range in isotopic composition of normal terrestrial material prevents a more precise atomic weight being given; the tabulated value should be applicable to any normal material.

This table lists the mass (in atomic mass units, symbol u) and the natural abundance (in percent) of the stable nuclides and a few important radioactive nuclides. A complete table of all nuclides may be found in Section 11 ("Table of the Isotopes").

The atomic masses were taken from the 2003 evaluation of Audi, Wapstra, and Thibault (References 2, 3). The number in parentheses following the mass value is the uncertainty in the last digit(s) given. An asterisk * after an entry indicates the mass value was derived not purely from experimental data, but at least partly from systematic trends.

Natural abundance values were taken from the IUPAC Technical Report "Atomic Weight of the Elements: Review 2000" (Reference 4); these entries are also followed by uncertainties in the last digit(s) of the stated values. This uncertainty includes both the estimated measurement uncertainty and the reported range of variation in different terrestrial sources of the element (see Reference 4 for full details and caveats regarding elements whose abundance is variable). The absence of an entry in the Abundance column indicates a radioactive nuclide not present in nature or an element whose isotopic composition varies so widely that a meaningful natural abundance cannot be defined.

References

- 1. Holden, N. E., "Table of the Isotopes", in Lide, D. R., Ed., CRC Handbook of Chemistry and Physics, 86th Ed., CRC Press, Boca Raton FL, 2005.
- 2. Audi, G., Wapstra, A. H., and Thibault, Nucl. Phys., A729, 336, 2003.
- Audi, G., and Wapstra, A. H., Atomic Mass Data Center, World Wide Web site, <http://www.nndc.bnl.gov/amdc/index.html>
- 4. de Laeter, J. R., Böhlke, J. K., De Bièvre, P., Hidaka, H., Peiser, H. S., Rosman, K. J. R., and Taylor, P. D. P., Pure Appl. Chem. 75, 683, 2003.

Z	Isotope	Mass in u	Abundance in %		Isotope	Mass in u	Abundance in %
1	¹ H	1.00782503207(10)	99.9885(70)	17	³⁵ Cl	34.96885268(4)	75.76(10)
	² H	2.0141017778(4)	0.0115(70)		³⁷ Cl	36.96590259(5)	24.24(10)
	³ H	3.0160492777(25)		18	³⁶ Ar	35.967545106(29)	0.3365(30)
2	³ He	3.0160293191(26)	0.000134(3)		³⁸ Ar	37.9627324(4)	0.0632(5)
	⁴ He	4.00260325415(6)	99.999866(3)		⁴⁰ Ar	39.9623831225(29)	99.6003(30)
3	⁶ Li	6.015122795(16)	7.59(4)	19	³⁹ K	38.96370668(20)	93.2581(44)
	⁷ Li	7.01600455(8)	92.41(4)		⁴⁰ K	39.96399848(21)	0.0117(1)
4	⁹ Be	9.0121822(4)	100		⁴¹ K	40.96182576(21)	6.7302(44)
5	¹⁰ B	10.0129370(4)	19.9(7)		⁴² K	41.96240281(24)	
	¹¹ B	11.0093054(4)	80.1(7)		⁴³ K	42.960716(10)	
6	¹¹ C	11.0114336(10)		20	⁴⁰ Ca	39.96259098(22)	96.941(156)
	^{12}C	12.0000000(0)	98.93(8)		⁴² Ca	41.95861801(27)	0.647(23)
	¹³ C	13.0033548378(10)	1.07(8)		⁴³ Ca	42.9587666(3)	0.135(10)
	^{14}C	14.003241989(4)			⁴⁴ Ca	43.9554818(4)	2.086(110)
7	^{14}N	14.0030740048(6)	99.636(7)		⁴⁵ Ca	44.9561866(4)	
	^{15}N	15.0001088982(7)	0.364(7)		⁴⁶ Ca	45.9536926(24)	0.004(3)
8	¹⁶ O	15.99491461956(16)	99.757(16)		⁴⁷ Ca	46.9545460(24)	
	¹⁷ O	16.99913170(12)	0.038(1)		⁴⁸ Ca	47.952534(4)	0.187(21)
	^{18}O	17.9991610(7)	0.205(14)	21	⁴⁵ Sc	44.9559119(9)	100
9	¹⁸ F	18.0009380(6)		22	⁴⁶ Ti	45.9526316(9)	8.25(3)
	¹⁹ F	18.99840322(7)	100		⁴⁷ Ti	46.9517631(9)	7.44(2)
10	²⁰ Ne	19.9924401754(19)	90.48(3)		⁴⁸ Ti	47.9479463(9)	73.72(3)
	²¹ Ne	20.99384668(4)	0.27(1)		⁴⁹ Ti	48.9478700(9)	5.41(2)
	²² Ne	21.991385114(19)	9.25(3)		⁵⁰ Ti	49.9447912(9)	5.18(2)
11	²² Na	21.9944364(4)		23	^{50}V	49.9471585(11)	0.250(4)
	²³ Na	22.9897692809(29)	100		^{51}V	50.9439595(11)	99.750(4)
	²⁴ Na	23.99096278(8)		24	⁵⁰ Cr	49.9460442(11)	4.345(13)
12	²⁴ Mg	23.985041700(14)	78.99(4)		⁵¹ Cr	50.9447674(11)	
	²⁵ Mg	24.98583692(3)	10.00(1)		⁵² Cr	51.9405075(8)	83.789(18)
	²⁶ Mg	25.982592929(30)	11.01(3)		⁵³ Cr	52.9406494(8)	9.501(17)
13	²⁷ Al	26.98153863(12)	100		⁵⁴ Cr	53.9388804(8)	2.365(7)
14	²⁸ Si	27.9769265325(19)	92.223(19)	25	⁵⁴ Mn	53.9403589(14)	
	²⁹ Si	28.976494700(22)	4.685(8)		⁵⁵ Mn	54.9380451(7)	100
	³⁰ Si	29.97377017(3)	3.092(11)	26	⁵² Fe	51.948114(7)	
15	³¹ P	30.97376163(20)	100		⁵⁴ Fe	53.9396105(7)	5.845(35)
	³² P	31.97390727(20)			⁵⁵ Fe	54.9382934(7)	
16	³² S	31.97207100(15)	94.99(26)		⁵⁶ Fe	55.9349375(7)	91.754(36)
	³³ S	32.97145876(15)	0.75(2)		⁵⁷ Fe	56.9353940(7)	2.119(10)
	³⁴ S	33.96786690(12)	4.25(24)		⁵⁸ Fe	57.9332756(8)	0.282(4)
	³⁵ S	34.96903216(11)			⁵⁹ Fe	58.9348755(8)	
	³⁶ S	35.96708076(20)	0.01(1)	27	⁵⁷ Co	56.9362914(8)	

Atomic Masses and Abundances

1		1	Ω
Τ	-	T	υ

Ζ	Isotope	Mass in u	Abundance in %		Isotope	Mass in u	Abundance in %
	58Co	57.9357528(13)			⁹⁶ Zr	95.9082734(30)	2.80(9)
	⁵⁹ Co	58.9331950(7)	100	41	⁹³ Nb	92.9063781(26)	100
	⁶⁰ Co	59.9338171(7)		42	⁹² Mo	91.906811(4)	14.77(31)
28	⁵⁸ Ni	57.9353429(7)	68.0769(89)		⁹⁴ Mo	93.9050883(21)	9.23(10)
	⁵⁹ Ni	58.9343467(7)			⁹⁵ Mo	94.9058421(21)	15.90(9)
	⁶⁰ Ni	59.9307864(7)	26.2231(77)		⁹⁶ Mo	95.9046795(21)	16.68(1)
	⁶¹ Ni	60.9310560(7)	1.1399(6)		⁹⁷ Mo	96.9060215(21)	9.56(5)
	⁶² Ni	61.9283451(6)	3.6345(17)		⁹⁸ Mo	97.9054082(21)	24.19(26)
	⁶³ Ni	62.9296694(6)			⁹⁹ Mo	98.9077119(21)	
	⁶⁴ Ni	63.9279660(7)	0.9256(9)		¹⁰⁰ Mo	99.907477(6)	9.67(20)
29	⁶³ Cu	62.9295975(6)	69.15(3)	43	⁹⁷ Tc	96.906365(5)	
	⁶⁴ Cu	63.9297642(6)			⁹⁸ Tc	97.907216(4)	
	⁶⁵ Cu	64.9277895(7)	30.85(3)		⁹⁹ Tc	98.9062547(21)	
30	⁶⁴ Zn	63.9291422(7)	48.268(321)	44	⁹⁶ Ru	95.907598(8)	5.54(14)
	⁶⁵ Zn	64.9292410(7)			98Ru	97.905287(7)	1.87(3)
	⁶⁶ Zn	65.9260334(10)	27.975(77)		99Ru	98.9059393(22)	12.76(14)
	⁶⁷ Zn	66.9271273(10)	4.102(21)		¹⁰⁰ Ru	99.9042195(22)	12.60(7)
	⁶⁸ Zn	67.9248442(10)	19.024(123)		¹⁰¹ Ru	100.9055821(22)	17.06(2)
	⁷⁰ Zn	69.9253193(21)	0.631(9)		¹⁰² Ru	101.9043493(22)	31.55(14)
31	⁶⁷ Ga	66.9282017(14)			¹⁰⁴ Ru	103.905433(3)	18.62(27)
	⁶⁸ Ga	67.9279801(16)			¹⁰⁶ Ru	105.907329(8)	
	⁶⁹ Ga	68.9255736(13)	60.108(9)	45	¹⁰³ Rh	102.905504(3)	100
	⁷¹ Ga	70.9247013(11)	39.892(9)	46	¹⁰² Pd	101.905609(3)	1.02(1)
32	⁶⁸ Ge	67.928094(7)			¹⁰⁴ Pd	103.904036(4)	11.14(8)
	⁷⁰ Ge	69.9242474(11)	20.38(18)		¹⁰⁵ Pd	104.905085(4)	22.33(8)
	⁷² Ge	71.9220758(18)	27.31(26)		¹⁰⁶ Pd	105.903486(4)	27.33(3)
	⁷³ Ge	72.9234589(18)	7.76(8)		¹⁰⁸ Pd	107.903892(4)	26.46(9)
	⁷⁴ Ge	73.9211778(18)	36.72(15)		¹¹⁰ Pd	109.905153(12)	11.72(9)
	⁷⁶ Ge	75.9214026(18)	7.83(7)	47	¹⁰⁷ Ag	106.905097(5)	51.839(8)
33	⁷⁵ As	74.9215965(20)	100		¹⁰⁹ Ag	108.904752(3)	48.161(8)
34	⁷⁴ Se	73.9224764(18)	0.89(4)	48	¹⁰⁶ Cd	105.906459(6)	1.25(6)
	⁷⁵ Se	74.9225234(18)	0.07(00)		¹⁰⁸ Cd	107.904184(6)	0.89(3)
	⁷⁶ Se ⁷⁷ Se	75.9192136(18)	9.37(29)		¹¹⁰ Cd ¹¹¹ Cd	109.9030021(29)	12.49(18)
	⁷⁸ Se	76.9199140(18)	7.63(16)		¹¹² Cd	110.9041781(29) 111.9027578(29)	12.80(12)
	⁷⁹ Se	77.9173091(18)	23.77(28)		¹¹³ Cd	· · · ·	24.13(21)
	⁸⁰ Se	78.9184991(18) 79.9165213(21)	49.61(41)		¹¹⁴ Cd	112.9044017(29) 113.9033585(29)	12.22(12) 28.73(42)
	⁸² Se	81.9166994(22)	8.73(22)		¹¹⁶ Cd	115.904756(3)	7.49(18)
35	⁷⁹ Br	78.9183371(22)	50.69(7)	49	¹¹¹ In	110.905103(5)	7.49(10)
55	⁸¹ Br	80.9162906(21)	49.31(7)	17	¹¹³ In	112.904058(3)	4.29(5)
36	⁷⁸ Kr	77.9203648(12)	0.355(3)		¹¹⁵ In	112.904038(5)	95.71(5)
50	⁸⁰ Kr	79.9163790(16)	2.286(10)	50	¹¹² Sn	111.904818(5)	0.97(1)
	⁸² Kr	81.9134836(19)	11.593(31)		¹¹³ Sn	112.905171(4)	0.07(1)
	⁸³ Kr	82.914136(3)	11.500(19)		¹¹⁴ Sn	113.902779(3)	0.66(1)
	⁸⁴ Kr	83.911507(3)	56.987(15)		¹¹⁵ Sn	114.903342(3)	0.34(1)
	⁸⁶ Kr	85.91061073(11)	17.279(41)		¹¹⁶ Sn	115.901741(3)	14.54(9)
37	⁸⁵ Rb	84.911789738(12)	72.17(2)		¹¹⁷ Sn	116.902952(3)	7.68(7)
	⁸⁶ Rb	85.91116742(21)			¹¹⁸ Sn	117.901603(3)	24.22(9)
	⁸⁷ Rb	86.909180527(13)	27.83(2)		¹¹⁹ Sn	118.903308(3)	8.59(4)
38	⁸⁴ Sr	83.913425(3)	0.56(1)		¹²⁰ Sn	119.9021947(27)	32.58(9)
	⁸⁵ Sr	84.912933(3)			122 Sn	121.9034390(29)	4.63(3)
	⁸⁶ Sr	85.9092602(12)	9.86(1)		¹²⁴ Sn	123.9052739(15)	5.79(5)
	⁸⁷ Sr	86.9088771(12)	7.00(1)	51	121 Sb	120.9038157(24)	57.21(5)
	⁸⁸ Sr	87.9056121(12)	82.58(1)		¹²³ Sb	122.9042140(22)	42.79(5)
	⁸⁹ Sr	88.9074507(12)		52	¹²⁰ Te	119.904020(10)	0.09(1)
	90Sr	89.907738(3)			¹²² Te	121.9030439(16)	2.55(12)
39	⁸⁹ Y	88.9058483(27)	100		¹²³ Te	122.9042700(16)	0.89(3)
40	⁹⁰ Zr	89.9047044(25)	51.45(40)		¹²⁴ Te	123.9028179(16)	4.74(14)
	⁹¹ Zr	90.9056458(25)	11.22(5)		¹²⁵ Te	124.9044307(16)	7.07(15)
	⁹² Zr	91.9050408(25)	17.15(8)		¹²⁶ Te	125.9033117(16)	18.84(25)
	⁹⁴ Zr	93.9063152(26)	17.38(28)		¹²⁸ Te	127.9044631(19)	31.74(8)

Atomic Masses and Abundances

Z	Isotope	Mass in u	Abundance in %	Z	Isotope	Mass in u	Abundance in %
	¹³⁰ Te	129.9062244(21)	34.08(62)		¹⁵⁸ Gd	157.9241039(27)	24.84(7)
53	¹²³ I	122.905589(4)			¹⁶⁰ Gd	159.9270541(27)	21.86(19)
	¹²⁵ I	124.9046302(16)	100	65	¹⁵⁹ Tb	158.9253468(27)	100
	¹²⁷ I ¹²⁹ I	126.904473(4)	100	66	¹⁵⁶ Dy	155.924283(7)	0.056(3)
	-	128.904988(3)			¹⁵⁸ Dy	157.924409(4)	0.095(3)
54	¹³¹ I	130.9061246(12)	0.0050(2)		¹⁶⁰ Dy	159.9251975(27)	2.329(18)
54	¹²⁴ Xe	123.9058930(20)	0.0952(3)		¹⁶¹ Dy	160.9269334(27)	18.889(42)
	¹²⁶ Xe	125.904274(7)	0.0890(2)		¹⁶² Dy	161.9267984(27)	25.475(36)
	¹²⁸ Xe	127.9035313(15)	1.9102(8)		¹⁶³ Dy	162.9287312(27)	24.896(42)
	¹²⁹ Xe	128.9047794(8)	26.4006(82)	(7	¹⁶⁴ Dy	163.9291748(27)	28.260(54)
	¹³⁰ Xe	129.9035080(8)	4.0710(13)	67	¹⁶⁵ Ho	164.9303221(27)	100
	¹³¹ Xe	130.9050824(10)	21.2324(30)	68	¹⁶² Er	161.928778(4)	0.139(5)
	¹³² Xe	131.9041535(10)	26.9086(33)		¹⁶⁴ Er	163.929200(3)	1.601(3)
	¹³⁴ Xe	133.9053945(9)	10.4357(21)		¹⁶⁶ Er	165.9302931(27)	33.503(36)
	¹³⁶ Xe	135.907219(8)	8.8573(44)		¹⁶⁷ Er ¹⁶⁸ Er	166.9320482(27)	22.869(9)
55	¹²⁹ Cs ¹³³ Cs	128.906064(5)	100		¹³⁰ Er ¹⁷⁰ Er	167.9323702(27)	26.978(18)
	^{135}Cs	132.905451933(24)	100	(0)		169.9354643(30)	14.910(36)
	¹³⁶ Cs	133.906718475(28)		69 70	¹⁶⁹ Tm ¹⁶⁸ Yb	168.9342133(27)	100
	¹³⁷ Cs	135.9073116(20)		/0	¹⁶⁹ Yb	167.933897(5)	0.13(1)
50		136.9070895(5)	0.10((1))		¹⁰⁹ Y b	168.935190(5) 169.9347618(26)	2.04(15)
56	¹³⁰ Ba	129.9063208(30)	0.106(1)		¹⁷¹ Yb	()	3.04(15)
	¹³² Ba	131.9050613(11)	0.101(1)		¹⁷² Yb	170.9363258(26)	14.28(57)
	¹³³ Ba ¹³⁴ Ba	132.9060075(11)	2.417(10)		¹⁷² Yb ¹⁷³ Yb	171.9363815(26)	21.83(67)
		133.9045084(4)	2.417(18)			172.9382108(26)	16.13(27)
	¹³⁵ Ba	134.9056886(4)	6.592(12)		¹⁷⁴ Yb	173.9388621(26)	31.83(92)
	¹³⁶ Ba	135.9045759(4)	7.854(24)	71	¹⁷⁶ Yb	175.9425717(28)	12.76(41)
	¹³⁷ Ba	136.9058274(5)	11.232(24)	71	¹⁷⁵ Lu	174.9407718(23)	97.41(2)
	¹³⁸ Ba	137.9052472(5)	71.698(42)	70	¹⁷⁶ Lu	175.9426863(23)	2.59(2)
	¹⁴⁰ Ba ¹³⁸ La	139.910605(9)	0.000(1)	72	¹⁷⁴ Hf ¹⁷⁶ Hf	173.940046(3)	0.16(1)
57		137.907112(4)	0.090(1)		¹⁷⁷ Hf	175.9414086(24)	5.26(7)
50	¹³⁹ La ¹³⁶ Ce	138.9063533(26)	99.910(1)		¹⁷⁸ Hf	176.9432207(23)	18.60(9)
58	¹³⁸ Ce	135.907172(14)	0.185(2)		¹⁷⁹ Hf	177.9436988(23)	27.28(7)
	¹⁴⁰ Ce	137.905991(11)	0.251(2)		¹⁸⁰ Hf	178.9458161(23) 179.9465500(23)	13.62(2) 35.08(16)
	¹⁴¹ Ce	139.9054387(26) 140.9082763(26)	88.450(51)	73	¹⁸⁰ Ta	179.9465500(25)	0.012(2)
	¹⁴² Ce	· · ·	11.114(51)	75	¹⁸¹ Ta	· · ·	99.988(2)
	¹⁴⁴ Ce	141.909244(3) 143.913647(4)	11.114(51)	74	¹⁸⁰ W	180.9479958(19) 179.946704(4)	0.12(1)
59	¹⁴¹ Pr	140.9076528(26)	100	/4	¹⁸² W	181.9482042(9)	26.50(16)
60	¹⁴² Nd	140.9070328(20)	27.2(5)		¹⁸³ W	181.9482042(9) 182.9502230(9)	14.31(4)
00	¹⁴³ Nd	142.9098143(25)	12.2(2)		¹⁸⁴ W	183.9509312(9)	30.64(2)
	¹⁴⁴ Nd	142.9098143(25)	23.8(3)		186W	185.9543641(19)	28.43(19)
	¹⁴⁵ Nd	144.9125736(25)	8.3(1)	75	¹⁸⁵ Re	185.9543641(19)	37.40(2)
	¹⁴⁶ Nd	145.9131169(25)	17.2(3)	75	¹⁸⁷ Re	184.9529550(15)	62.60(2)
	¹⁴⁸ Nd	147.916893(3)	5.7(1)	76	¹⁸⁴ Os	183.9524891(14)	0.02(1)
	¹⁵⁰ Nd	149.920891(3)	5.6(2)	/0	¹⁸⁶ Os	185.9538382(15)	1.59(3)
61	¹⁴⁵ Pm	144.912749(3)	5.0(2)		¹⁸⁷ Os	186.9557505(15)	1.96(2)
01	¹⁴⁷ Pm	146.9151385(26)			¹⁸⁸ Os	187.9558382(15)	13.24(8)
62	¹⁴⁴ Sm	143.911999(3)	3.07(7)		¹⁸⁹ Os	187.9558582(15)	16.15(5)
02	¹⁴⁷ Sm	146.9148979(26)	14.99(18)		¹⁹⁰ Os	189.9584470(16)	26.26(2)
	¹⁴⁸ Sm	147.9148227(26)	11.24(10)		¹⁹² Os	191.9614807(27)	40.78(19)
	¹⁴⁹ Sm	148.9171847(26)	13.82(7)	77	¹⁹¹ Ir	191.9614807(27)	37.3(2)
	¹⁵⁰ Sm	149.9172755(26)	7.38(1)	//	¹⁹³ Ir	190.9605940(18) 192.9629264(18)	62.7(2)
	¹⁵² Sm			70	¹⁹⁰ Pt		
	¹⁵² Sm ¹⁵⁴ Sm	151.9197324(27) 153.9222093(27)	26.75(16)	78	¹⁹⁰ Pt ¹⁹² Pt	189.959932(6) 191.9610380(27)	0.014(1) 0.782(7)
(2)			22.75(29)				
63	¹⁵¹ Eu	150.9198502(26)	47.81(6)		¹⁹⁴ Pt	193.9626803(9)	32.967(99)
C.A	¹⁵³ Eu	152.9212303(26)	52.19(6)		¹⁹⁵ Pt	194.9647911(9)	33.832(10) 25.242(41)
64	¹⁵² Gd	151.9197910(27)	0.20(1)		¹⁹⁶ Pt	195.9649515(9)	25.242(41)
	¹⁵⁴ Gd	153.9208656(27)	2.18(3)	70	¹⁹⁸ Pt	197.967893(3)	7.163(55)
	¹⁵⁵ Gd	154.9226220(27) 155.9221227(27)	14.80(12)	79	¹⁹⁷ Au	196.9665687(6) 197.9682423(6)	100
	¹⁵⁶ Gd ¹⁵⁷ Gd		20.47(9)	80	¹⁹⁸ Au		0.1E(1)
	Gu	156.9239601(27)	15.65(2)	80	¹⁹⁶ Hg	195.965833(3)	0.15(1)

Atomic Masses and Abundances

Ζ	Isotope	Mass in u	Abundance in %		Isotope	Mass in u	Abundance in %
	¹⁹⁷ Hg	196.967213(3)			²³⁶ U	236.0455680(20)	
	¹⁹⁸ Hg	197.9667690(4)	9.97(20)		²³⁸ U	238.0507882(20)	99.2742(10)
	¹⁹⁹ Hg	198.9682799(4)	16.87(22)	93	²³⁷ Np	237.0481734(20)	
	²⁰⁰ Hg	199.9683260(4)	23.10(19)		²³⁹ Np	239.0529390(22)	
	²⁰¹ Hg	200.9703023(6)	13.18(9)	94	²³⁸ Pu	238.0495599(20)	
	²⁰² Hg	201.9706430(6)	29.86(26)		²³⁹ Pu	239.0521634(20)	
	²⁰³ Hg	202.9728725(18)			²⁴⁰ Pu	240.0538135(20)	
	²⁰⁴ Hg	203.9734939(4)	6.87(15)		²⁴¹ Pu	241.0568515(20)	
81	²⁰¹ Tl	200.970819(16)			²⁴² Pu	242.0587426(20)	
	²⁰³ Tl	202.9723442(14)	29.52(1)		²⁴⁴ Pu	244.064204(5)	
	²⁰⁵ Tl	204.9744275(14)	70.48(1)	95	²⁴¹ Am	241.0568291(20)	
82	²⁰⁴ Pb	203.9730436(13)	1.4(1)		²⁴³ Am	243.0613811(25)	
	²⁰⁶ Pb	205.9744653(13)	24.1(1)	96	²⁴³ Cm	243.0613891(22)	
	²⁰⁷ Pb	206.9758969(13)	22.1(1)		²⁴⁴ Cm	244.0627526(20)	
	²⁰⁸ Pb	207.9766521(13)	52.4(1)		²⁴⁵ Cm	245.0654912(22)	
	²¹⁰ Pb	209.9841885(16)			²⁴⁶ Cm	246.0672237(22)	
83	²⁰⁷ Bi	206.9784707(26)			²⁴⁷ Cm	247.070354(5)	
	²⁰⁹ Bi	208.9803987(16)	100		²⁴⁸ Cm	248.072349(5)	
84	²⁰⁹ Po	208.9824304(20)		97	²⁴⁷ Bk	247.070307(6)	
	²¹⁰ Po	209.9828737(13)			²⁴⁹ Bk	249.0749867(28)	
85	²¹⁰ At	209.987148(8)		98	²⁴⁹ Cf	249.0748535(24)	
	²¹¹ At	210.9874963(30)			²⁵⁰ Cf	250.0764061(22)	
86	²¹¹ Rn	210.990601(7)			²⁵¹ Cf	251.079587(5)	
	²²⁰ Rn	220.0113940(24)			²⁵² Cf	252.081626(5)	
	²²² Rn	222.0175777(25)		99	²⁵² Es	252.082980(50)	
87	²²³ Fr	223.0197359(26)		100	²⁵⁷ Fm	257.095105(7)	
88	²²³ Ra	223.0185022(27)		101	²⁵⁶ Md	256.094060(60)	
	²²⁴ Ra	224.0202118(24)			²⁵⁸ Md	258.098431(5)	
	²²⁶ Ra	226.0254098(25)		102	²⁵⁹ No	259.10103(11)*	
	²²⁸ Ra	228.0310703(26)		103	²⁶² Lr	262.10963(22)*	
89	²²⁷ Ac	227.0277521(26)		104	²⁶¹ Rf	261.108770(30)*	
90	²²⁸ Th	228.0287411(24)		105	²⁶² Db	262.11408(20)*	
	²³⁰ Th	230.0331338(19)		106	²⁶³ Sg	263.11832(13)*	
	²³² Th	232.0380553(21)	100	107	²⁶⁴ Bh	264.12460(30)*	
91	²³¹ Pa	231.0358840(24)	100	108	²⁶⁵ Hs	265.13009(15)*	
92	²³³ U	233.0396352(29)		109	²⁶⁸ Mt	268.13873(34)*	
				1			

0.0054(5)

0.7204(6)

²⁸¹Ds

 272 Rg

281.16206(78)*

273.15362(36)*

110

111

²³⁴U

²³⁵U

234.0409521(20)

235.0439299(20)

ELECTRON CONFIGURATION AND IONIZATION ENERGY OF NEUTRAL ATOMS IN THE GROUND STATE

William C. Martin

References

The ground state electron configuration, ground level, and ionization energy of the elements hydrogen through rutherfordium are listed in this table. The electron configurations of elements heavier than neon are shortened by using rare-gas element symbols in brackets to represent the corresponding electrons. See the references for details of the notation for Pa, U, and Np. Ionization energies to higher states (and more precise values of the first ionization energy for certain elements) may be found in the table "Ionization Energies of Atoms and Atomic Ions" in Section 10 of this *Handbook*.

- Martin, W. C., Musgrove, A., Kotochigova, S., and Sansonetti, J. E., NIST Physical Reference Data Web Site, http://physics.nist.gov/ PhysRefData/IonEnergy/ionEnergy.html>, October 2004.
- Martin, W. C., and Wiese, W. L., "Atomic Spectroscopy", in *Atomic, Molecular, & Optical Physics Handbook*, ed. by G.W.F. Drake (AIP, Woodbury, NY, 1996) Chapter 10, pp. 135-153.

Z		Element	Ground-state configuration	Ground level	Ionization energy (eV)
1	Н	Hydrogen	1s	² S _{1/2}	13.5984
2	He	Helium	$1s^2$	$^{1}S_{0}$	24.5874
3	Li	Lithium	$1s^2 2s$	${}^{2}S_{1/2}$	5.3917
4	Be	Beryllium	$1s^2 2s^2$	¹ S ₀	9.3227
5	В	Boron	$1s^2 2s^2 2p$	${}^{2}\mathrm{P}^{0}_{1/2}$	8.2980
6	С	Carbon	$1s^2 2s^2 2p^2$	³ P _o	11.2603
7	Ν	Nitrogen	$1s^2 2s^2 2p^3$	⁴ S ^o _{3/2}	14.5341
8	0	Oxygen	$1s^2 2s^2 2p^4$	³ P_	13.6181
9	F	Fluorine	$1s^2 2s^2 2p^5$	${}^{2}\mathbf{P}^{o}_{3/2}$	17.4228
10	Ne	Neon	$1s^2 2s^2 2p^6$	¹ S ₀	21.5645
11	Na	Sodium	[Ne] 3s	² S _{1/2}	5.1391
12	Mg	Magnesium	[Ne] $3s^2$	${}^{1}S_{0}$	7.6462
13	Al	Aluminum	[Ne] $3s^2 3p$	${}^{2}\mathrm{P}^{\mathrm{o}}_{1/2}$	5.9858
14	Si	Silicon	[Ne] $3s^2 3p^2$	³ P	8.1517
15	Р	Phosphorus	[Ne] $3s^2 3p^3$	⁴ S° _{3/2}	10.4867
16	S	Sulfur	[Ne] $3s^2 3p^4$	sp.	10.3600
17	Cl	Chlorine	[Ne] $3s^2 3p^5$	${}^{2}P^{o}_{3/2}$	12.9676
18	Ar	Argon	[Ne] $3s^2 3p^6$	${}^{1}S_{0}^{5/2}$	15.7596
19	К	Potassium	[Ar] 4 <i>s</i>	${}^{2}S_{1/2}$	4.3407
20	Ca	Calcium	$[Ar] 4s^2$	${}^{1}S_{0}$	6.1132
21	Sc	Scandium	[Ar] $3d 4s^2$	² D _{3/2}	6.5615
22	Ti	Titanium	$[Ar] 3d^2 4s^2$	³ F,	6.8281
23	V	Vanadium	$[Ar] 3d^3 4s^2$	⁴ F _{3/2}	6.7462
24	Cr	Chromium	[Ar] 3d ⁵ 4s	⁷ S ₂	6.7665
25	Mn	Manganese	$[Ar] 3d^5 4s^2$	⁶ S _{5/2}	7.4340
26	Fe	Iron	$[Ar] 3d^6 4s^2$	⁵ D,	7.9024
27	Co	Cobalt	$[Ar] 3d^7 4s^2$	${}^{4}F_{\alpha/2}$	7.8810
28	Ni	Nickel	$[Ar] 3d^8 4s^2$	³ F ₄	7.6398
29	Cu	Copper	$[Ar] 3d^{10} 4s$	${}^{2}S_{1/2}$	7.7264
30	Zn	Zinc	$[Ar] 3d^{10} 4s^2$	¹ S.	9.3942
31	Ga	Gallium	$[Ar] 3d^{10} 4s^2 4p$	${}^{2}P_{1/2}^{0}$	5.9993
32	Ge	Germanium	$[\mathrm{Ar}] \ 3d^{10} \ 4s^2 \ 4p^2$	³ P	7.8994
33	As	Arsenic	$[\mathrm{Ar}] \ 3d^{10} \ 4s^2 \ 4p^3$	⁴ S ^o _{3/2}	9.7886
34	Se	Selenium	$[{\rm Ar}] \ 3d^{10} \ 4s^2 \ 4p^4$	³ P.	9.7524
35	Br	Bromine	$[{\rm Ar}] \ 3d^{10} \ 4s^2 \ 4p^5$	${}^{2}P^{o}_{3/2}$	11.8138
36	Kr	Krypton	$[{\rm Ar}] 3d^{10} 4s^2 4p^6$	¹ S ₀	13.9996
37	Rb	Rubidium	[Kr] 5 <i>s</i>	${}^{2}S_{1/2}$	4.1771
38	Sr	Strontium	$[Kr] 5s^2$	${}^{1}S_{0}$	5.6949
39	Υ	Yttrium	[Kr] 4 <i>d</i> 5 <i>s</i> ²	$^{2}D_{3/2}$	6.2173
40	Zr	Zirconium	$[Kr] 4d^2 5s^2$	³ F ₂	6.6339
41	Nb	Niobium	$[Kr] 4d^4 5s$	⁶ D _{1/2}	6.7589
42	Мо	Molybdenum	[Kr] 4d ⁵ 5s	⁷ S ₂	7.0924
43	Tc	Technetium	$[Kr] 4d^5 5s^2$	⁶ S _{5/2}	7.28
44	Ru	Ruthenium	[Kr] 4 <i>d</i> ⁷ 5 <i>s</i>	⁵ F ₅	7.3605

			Ground-state	Ground	Ionization
Ζ		Element	configuration	level	energy (eV)
45	Rh	Rhodium	[Kr] 4d ⁸ 5s	⁴ F _{9/2}	7.4589
46	Pd	Palladium	$[Kr] 4d^{10}$	${}^{1}S_{0}$	8.3369
47	Ag	Silver	$[Kr] 4d^{10} 5s$	${}^{2}S_{1/2}$	7.5762
48	Cd	Cadmium	[Kr] $4d^{10} 5s^2$	¹ S ₀	8.9938
49	In	Indium	[Kr] $4d^{10} 5s^2 5p$	${}^{2}P^{o}_{1/2}$	5.7864
50	Sn	Tin	[Kr] $4d^{10} 5s^2 5p^2$	³ P ₀	7.3439
51	Sb	Antimony	[Kr] $4d^{10} 5s^2 5p^3$	⁴ S ^o _{3/2}	8.6084
52	Te	Tellurium	[Kr] $4d^{10} 5s^2 5p^4$	³ P	9.0096
53	Ι	Iodine	[Kr] $4d^{10} 5s^2 5p^5$	${}^{2}P_{3/2}^{0}$	10.4513
54	Xe	Xenon	[Kr] $4d^{10} 5s^2 5p^6$	15	12.1298
55	Cs	Cesium	[Xe] 6 <i>s</i>	${}^{2}S_{1/2}$	3.8939
56	Ba	Barium	$[Xe] 6s^2$	¹ S ₀	5.2117
57	La	Lanthanum	[Xe] $5d 6s^2$	$^{2}D_{3/2}$	5.5769
58	Ce	Cerium	[Xe] $4f 5d 6s^2$	${}^{1}G_{4}^{o}$	5.5387
59	Pr	Praseodymium	[Xe] $4f^3 6s^2$	⁴ I ^o _{9/2}	5.473
60	Nd	Neodymium	[Xe] $4f^4 6s^2$	⁵ I ₄	5.5250
61	Pm	Promethium	$[Xe] 4f^5 6s^2$	⁶ H ^o _{5/2}	5.582
62	Sm E	Samarium	$[Xe] 4f^{6} 6s^{2}$	${}^{7}F_{0}$	5.6437
63 64	Eu Gd	Europium	[Xe] $4f^7 6s^2$	⁸ S ^o _{7/2}	5.6704
	Tb	Gadolinium	[Xe] $4f^7 5d 6s^2$	⁹ D ^o ₂	6.1498
65 66	I D Dy	Terbium Dysprosium	[Xe] $4f^9 6s^2$ [Xe] $4f^{40} 6s^2$	⁶ H [°] _{15/2}	5.8638 5.9389
67	Ho	Holmium	$[Xe] 4f^{11} 6s^2$	⁵ I ₈ 410	6.0215
68	Er	Erbium	[Xe] $4f^{12} 6s^2$	⁴ I° _{15/2} ³ H ₆	6.1077
69	Tm	Thulium	[Xe] $4f^{13} 6s^2$	² F ^o _{7/2}	6.1843
70	Yb	Ytterbium	$[Xe] 4f^{14} 6s^2$	${}^{1}S_{0}^{7/2}$	6.2542
71	Lu	Lutetium	[Xe] $4f^{4} 5d 6s^{2}$	² D _{3/2}	5.4259
72	Hf	Hafnium	[Xe] $4f^{14} 5d^2 6s^2$	${}^{3}F_{2}$	6.8251
73	Та	Tantalum	[Xe] $4f^{4} 5d^3 6s^2$	${}^{4}F_{3/2}$	7.5496
74	W	Tungsten	[Xe] $4f^{14} 5d^4 6s^2$	⁵ D ₀	7.8640
75	Re	Rhenium	[Xe] $4f^{14} 5d^5 6s^2$	⁶ S _{5/2}	7.8335
76	Os	Osmium	[Xe] $4f^{14} 5d^6 6s^2$	${}^{5/2}$	8.4382
77	Ir	Iridium	[Xe] $4f^{4} 5d^7 6s^2$	⁴ F _{9/2}	8.9670
78	Pt	Platinum	[Xe] $4f^{14} 5d^9 6s$	³ D ₂	8.9588
79	Au	Gold	[Xe] $4f^{14} 5d^{10} 6s$	${}^{2}S_{1}$	9.2255
80	Hg	Mercury	[Xe] $4f^{14} 5d^{10} 6s^2$	¹ S ₀	10.4375
81	Tl	Thallium	[Xe] $4f^{14} 5d^{10} 6s^2 6p$	${}^{2}P_{1/2}^{0}$	6.1082
82	Pb	Lead	$[Xe] 4f^{4} 5d^{10} 6s^2 6p^2$	³ P	7.4167
83	Bi	Bismuth	$[Xe] 4f^{14} 5d^{10} 6s^2 6p^3$	⁴ S ^o _{3/2}	7.2855
84	Ро	Polonium	$[Xe] 4f^{14} 5d^{10} 6s^2 6p^4$	$^{3}P_{2}$	8.414
85	At	Astatine	$[Xe] 4f^{14} 5d^{10} 6s^2 6p^5$	² P ^o _{3/2}	
86	Rn	Radon	[Xe] $4f^{44} 5d^{10} 6s^2 6p^6$	¹ S ₀	10.7485
87	Fr	Francium	[Rn] 7 <i>s</i>	${}^{2}S_{1/2}$	4.0727
88	Ra	Radium	$[Rn] 7s^2$	¹ S ₀	5.2784
89	Ac	Actinium	$[\operatorname{Rn}] 6d 7s^2$	² D _{3/2}	5.17
90	Th	Thorium	$[\mathrm{Rn}] 6d^2 7s^2$	³ F ₂	6.3067
91	Pa	Protactinium	$[\text{Rn}] 5f^2({}^3\text{H}_4) 6d 7s^2$	$(4,3/2)_{11/2}$	5.89
92	U	Uranium	$[\text{Rn}] 5f^{3}({}^{4}\text{I}^{\circ}_{9/2}) 6d 7s^{2}$	$(9/2,3/2)^{\circ}_{6}$	6.1941
93	Np	Neptunium	[Rn] $5f^4({}^5I_4) 6d 7s^2$	(4,3/2) _{11/2}	6.2657
94 05	Pu	Plutonium	$[\text{Rn}] 5f^6 7s^2$	⁷ F ₀	6.0260
95 06	Am Cm	Americium	$[\text{Rn}] 5f' 7s^2$	⁸ S ^o _{7/2}	5.9738
96 97	Cm Bk	Curium	[Rn] $5f^7 6d 7s^2$ [Rn] $5f^2 7s^2$	⁹ D° ₂ 6но	5.9914 6 1979
97 98	Bk Cf	Berkelium Californium	[Rn] $5f^9 7s^2$ [Rn] $5f^{10} 7s^2$	⁶ H [°] _{15/2}	6.1979 6.2817
98 99	Es	Einsteinium	[Rn] $5f^{11} 7s^2$	⁵ I ₈ 410	6.2817
99 100	Es Fm	Fermium	[Rn] $5f^{12}$ $7s^2$	⁴ I ^o _{15/2} ³ H ₆	6.42 6.50
100	Md	Mendelevium	[Rn] $5f^{13} 7s^2$	${}^{2}F^{o}_{7/2}$	6.58
101	No	Nobelium	[Rn] $5f^{14} 7s^2$	${}^{1}S_{0}^{7/2}$	6.65
102	Lr	Lawrencium	[Rn] $5f^{14} 7s^2 7p$?	${}^{2}\mathrm{P^{o}}_{1/2}$?	4.9?
103	Rf	Rutherfordium	[Rn] $5f^{14} 6d^2 7s^2$?	${}^{1}F_{2}^{1/2}$	6.0?
				2	

INTERNATIONAL TEMPERATURE SCALE OF 1990 (ITS-90)

B. W. Mangum

A new temperature scale, the International Temperature Scale of 1990 (ITS-90), was officially adopted by the Comité International des Poids et Mesures (CIPM), meeting 26—28 September 1989 at the Bureau International des Poids et Mesures (BIPM). The ITS-90 was recommended to the CIPM for its adoption following the completion of the final details of the new scale by the Comité Consultatif de Thermométrie (CCT), meeting 12—14 September 1989 at the BIPM in its 17th Session. The ITS-90 became the official international temperature scale on 1 January 1990. The ITS-90 supersedes the present scales, the International Practical Temperature Scale of 1968 (IPTS-68) and the 1976 Provisional 0.5 to 30 K Temperature Scale (EPT-76).

The ITS-90 extends upward from 0.65 K, and temperatures on this scale are in much better agreement with thermodynamic values that are those on the IPTS-68 and the EPT-76. The new scale has subranges and alternative definitions in certain ranges that greatly facilitate its use. Furthermore, its continuity, precision, and reproducibility throughout its ranges are much improved over that of the present scales. The replacement of the thermocouple with the platinum resistance thermometer at temperatures below 961.78°C resulted in the biggest improvement in reproducibility.

The ITS-90 is divided into four primary ranges:

1. Between 0.65 and 3.2 K, the ITS-90 is defined by the vapor pressure-temperature relation of ³He, and between 1.25 and 2.1768 K (the λ point) and between 2.1768 and 5.0 K by the vapor pressure-temperature relations of ⁴He. T_{90} is defined by the vapor pressure equations of the form:

Defining Fixed Points of the ITS-90

	Equilibrium	Temperature			
Material ^a	state ^b	$T_{90}(K)$	<i>t</i> ₉₀ (°C)		
He	VP	3 to 5	-270.15 to -268.15		
e-H ₂	TP	13.8033	-259.3467		
e-H ₂ (or He)	VP (or CVGT)	≈17	≈ -256.15		
e-H ₂ (or He)	VP (or CVGT)	≈20.3	≈ -252.85		
Ne ^c	TP	24.5561	-248.5939		
O ₂	TP	54.3584	-218.7916		
Ar	TP	83.8058	-189.3442		
Hg ^c	TP	234.3156	-38.8344		
H ₂ O	TP	273.16	0.01		
Gac	MP	302.9146	29.7646		
In ^c	FP	429.7485	156.5985		
Sn	FP	505.078	231.928		
Zn	FP	692.677	419.527		
Alc	FP	933.473	660.323		
Ag	FP	1234.93	961.78		
Au	FP	1337.33	1064.18		
Cu ^c	FP	1357.77	1084.62		

 $^{\rm a}\,$ e-H $_2$ indicates equilibrium hydrogen, that is, hydrogen with the equilibrium distribution of its ortho and para states. Normal hydrogen at room temperature contains 25% para hydrogen and 75% ortho hydrogen.

^b VP indicates vapor pressure point; CVGT indicates constant volume gas thermometer point; TP indicates triple point (equilibrium temperature at which the solid, liquid, and vapor phases coexist); FP indicates freezing point, and MP indicates melting point (the equilibrium temperatures at which the solid and liquid phases coexist under a pressure of 101 325 Pa, one standard atmosphere). The isotopic composition is that naturally occurring.

^c Previously, these were secondary fixed points.

$$T_{90} / K = A_0 + \sum_{i=1}^{9} A_i \left[\left(\ln(p / Pa) - B \right) / C \right]^i$$

The values of the coefficients A_{ρ} and of the constants A_{ρ} , B_{ρ} , and C of the equations are given below.

- 2. Between 3.0 and 24.5561 K, the ITS-90 is defined in terms of a ³He or ⁴He constant volume gas thermometer (CVGT). The thermometer is calibrated at three temperatures at the triple point of neon (24.5561 K), at the triple point of equilibrium hydrogen (13.8033 K), and at a temperature between 3.0 and 5.0 K, the value of which is determined by using either ³He or ⁴He vapor pressure thermometry.
- 3. Between 13.8033 K (–259.3467°C) and 1234.93 K (961.78°C), the ITS-90 is defined in terms of the specified fixed points given below, by resistance ratios of platinum resistance thermometers obtained by calibration at specified sets of the fixed points, and by reference functions and deviation functions of resistance ratios which relate to T_{90} between the fixed points.
- 4. Above 1234.93 K, the ITS-90 is defined in terms of Planck's radiation law, using the freezing-point temperature of either silver, gold, or copper as the reference temperature.

Full details of the calibration procedures and reference functions for various subranges are given in:

The International Temperature Scale of 1990, *Metrologia*, 27, 3, 1990; errata in *Metrologia*, 27, 107, 1990.

Values of Coefficients in the Vapor Pressure Equations for Helium

Coef. or	³ He	⁴ He	⁴ He
constant	0.65-3.2 K	1.25-2.1768 K	2.1768-5.0 K
A_0	1.053 447	1.392 408	3.146 631
A_1	0.980 106	0.527 153	1.357 655
A_2	0.676 380	0.166 756	0.413 923
A_{3}	0.372 692	0.050 988	0.091 159
A_4	0.151 656	0.026 514	0.016 349
A_{5}	-0.002 263	0.001 975	0.001 826
A_6	0.006 596	-0.017 976	$-0.004\ 325$
A_7	0.088 966	0.005 409	-0.004 973
A_8	-0.004770	0.013 259	0
A_9	-0.054 943	0	0
В	7.3	5.6	10.3
С	4.3	2.9	1.9

CONVERSION OF TEMPERATURES FROM THE 1948 AND 1968 SCALES TO ITS-90

This table gives temperature corrections from older scales to the current International Temperature Scale of 1990 (see the preceding table for details on ITS-90). The first part of the table may be used for converting Celsius temperatures in the range -180 to 4000°C from IPTS-68 or IPTS-48 to ITS-90. Within the accuracy of the corrections, the temperature in the first column may be identified with either t_{68} , t_{48} , or t_{90} . The second part of the table is designed for use at lower temperatures to convert values expressed in kelvins from EPT-76 or IPTS-68 to ITS-90.

The references give analytical equations for expressing these relations. Note that Reference 1 supersedes Reference 2 with respect to corrections in the 630 to 1064°C range.

References

- Burns, G. W. et al., in *Temperature: Its Measurement and Control in Science and Industry*, Vol. 6, Schooley, J. F., Ed., American Institute of Physics, New York, 1993.
- 2. Goldberg, R. N. and Weir, R. D., Pure and Appl. Chem., 1545, 1992.

<i>t</i> /°C	$t_{90}^{}-t_{68}^{}$	$t_{_{90}} - t_{_{48}}$	t/°C	$t_{90}^{}-t_{68}^{}$	$t_{90}^{}-t_{48}^{}$	t/°C	$t_{_{90}} - t_{_{68}}$	$t_{_{90}}-t_{_{48}}$	t/°C	$t_{_{90}}-t_{_{68}}$	$t_{90}^{}-t_{48}^{}$
-180	0.008	0.020	290	-0.039	0.032	760	0.04	0.60	2400	-1.00	3.2
-170	0.010	0.017	300	-0.039	0.034	770	0.05	0.63	2500	-1.07	3.4
-160	0.012	0.007	310	-0.039	0.035	780	0.05	0.66	2600	-1.15	3.7
-150	0.013	0.000	320	-0.039	0.036	790	0.05	0.69	2700	-1.24	3.8
-140	0.014	0.001	330	-0.040	0.036	800	0.05	0.72	2800	-1.32	4.0
-130	0.014	0.008	340	-0.040	0.037	810	0.05	0.75	2900	-1.41	4.2
-120	0.014	0.017	350	-0.041	0.036	820	0.04	0.76	3000	-1.50	4.4
-110	0.013	0.026	360	-0.042	0.035	830	0.04	0.79	3100	-1.59	4.6
-100	0.013	0.035	370	-0.043	0.034	840	0.03	0.81	3200	-1.69	4.8
-90	0.012	0.041	380	-0.045	0.032	850	0.02	0.83	3300	-1.78	5.1
-80	0.012	0.045	390	-0.046	0.030	860	0.01	0.85	3400	-1.89	5.3
-70	0.011	0.045	400	-0.048	0.028	870	0.00	0.87	3500	-1.99	5.5
-60	0.010	0.042	410	-0.051	0.024	880	-0.02	0.87	3600	-2.10	5.8
-50	0.009	0.038	420	-0.053	0.022	890	-0.03	0.89	3700	-2.21	6.0
-40	0.008	0.032	430	-0.056	0.019	900	-0.05	0.90	3800	-2.32	6.3
-30	0.006	0.024	440	-0.059	0.015	910	-0.06	0.92	3900	-2.43	6.6
-20	0.004	0.016	450	-0.062	0.012	920	-0.08	0.93	4000	-2.55	6.8
-10	0.002	0.008	460	-0.065	0.009	930	-0.10	0.94			
0	0.000	0.000	470	-0.068	0.007	940	-0.11	0.96	<i>T</i> /K	$T_{90}^{}-T_{76}^{}$	$T_{90} - T_{68}$
10	-0.002	-0.006	480	-0.072	0.004	950	-0.13	0.97	5	-0.0001	<i>y</i> 0 00
20	-0.005	-0.012	490	-0.075	0.002	960	-0.15	0.97	6	-0.0002	
30	-0.007	-0.016	500	-0.079	0.000	970	-0.16	0.99	7	-0.0003	
40	-0.010	-0.020	510	-0.083	-0.001	980	-0.18	1.00	8	-0.0004	
50	-0.013	-0.023	520	-0.087	-0.002	990	-0.19	1.02	9	-0.0005	
60	-0.016	-0.026	530	-0.090	-0.001	1000	-0.20	1.04	10	-0.0006	
70	-0.018	-0.026	540	-0.094	0.000	1010	-0.22	1.05	11	-0.0007	
80	-0.021	-0.027	550	-0.098	0.002	1020	-0.23	1.07	12	-0.0008	
90	-0.024	-0.027	560	-0.101	0.007	1030	-0.23	1.10	13	-0.0010	
100	-0.026	-0.026	570	-0.105	0.011	1040	-0.24	1.12	14	-0.0011	-0.006
110	-0.028	-0.024	580	-0.108	0.018	1050	-0.25	1.14	15	-0.0013	-0.003
120	-0.030	-0.023	590	-0.112	0.025	1060	-0.25	1.17	16	-0.0014	-0.004
130	-0.032	-0.020	600	-0.115	0.035	1070	-0.25	1.19	17	-0.0016	-0.006
140	-0.034	-0.018	610	-0.118	0.047	1080	-0.26	1.20	18	-0.0018	-0.008
150	-0.036	-0.016	620	-0.122	0.060	1090	-0.26	1.20	19	-0.0020	-0.009
160	-0.037	-0.012	630	-0.125	0.075	1100	-0.26	1.2	20	-0.0022	-0.009
170	-0.038	-0.009	640	-0.11	0.12	1200	-0.30	1.4	21	-0.0025	-0.008
180	-0.039	-0.005	650	-0.10	0.15	1300	-0.35	1.5	22	-0.0027	-0.007
190	-0.039	-0.001	660	-0.09	0.19	1400	-0.39	1.6	23	-0.0030	-0.007
200	-0.040	0.003	670	-0.07	0.24	1500	-0.44	1.8	24	-0.0032	-0.006
210	-0.040	0.007	680	-0.05	0.29	1600	-0.49	1.9	25	-0.0035	-0.005
220	-0.040	0.011	690	-0.04	0.32	1700	-0.54	2.1	26	-0.0038	-0.004
230	-0.040	0.014	700	-0.02	0.37	1800	-0.60	2.2	27	-0.0041	-0.004
240	-0.040	0.018	710	-0.01	0.41	1900	-0.66	2.3	28		-0.005
250	-0.040	0.021	720	0.00	0.45	2000	-0.72	2.5	29		-0.006
260	-0.040	0.024	730	0.02	0.49	2100	-0.79	2.7	30		-0.006
270	-0.039	0.028	740	0.03	0.53	2200	-0.85	2.9	31		-0.007
280	-0.039	0.030	750	0.03	0.56	2300	-0.93	3.1	32		-0.008
			1			1			1		

<i>T</i> /K	$T_{90} - T_{76}$ $T_{90} - T_{68}$	<i>T</i> /K	$T_{90} - T_{76}$ $T_{90} - T_{68}$	T/K	$T_{90} - T_{76}$ $T_{90} - T_{68}$	T/K	$T_{90}^{}-T_{76}^{}$	$T_{90} - T_{68}$
33	-0.008	57	0.000	81	0.008	150		0.014
34	-0.008	58	0.001	82	0.008	160		0.014
35	-0.007	59	0.002	83	0.008	170		0.013
36	-0.007	60	0.003	84	0.008	180		0.012
37	-0.007	61	0.003	85	0.008	190		0.012
38	-0.006	62	0.004	86	0.008	200		0.011
39	-0.006	63	0.004	87	0.008	210		0.010
40	-0.006	64	0.005	88	0.008	220		0.009
41	-0.006	65	0.005	89	0.008	230		0.008
42	-0.006	66	0.006	90	0.008	240		0.007
43	-0.006	67	0.006	91	0.008	250		0.005
44	-0.006	68	0.007	92	0.008	260		0.003
45	-0.007	69	0.007	93	0.008	270		0.001
46	-0.007	70	0.007	94	0.008	273.16		0.000
47	-0.007	71	0.007	95	0.008	300		-0.006
48	-0.006	72	0.007	96	0.008	400		-0.031
49	-0.006	73	0.007	97	0.009	500		-0.040
50	-0.006	74	0.007	98	0.009	600		-0.040
51	-0.005	75	0.008	99	0.009	700		-0.055
52	-0.005	76	0.008	100	0.009	800		-0.089
53	-0.004	77	0.008	110	0.011	900		-0.124
54	-0.003	78	0.008	120	0.013			
55	-0.002	79	0.008	130	0.014			
56	-0.001	80	0.008	140	0.014			

INTERNATIONAL SYSTEM OF UNITS (SI)

The International System of Units, abbreviated as SI (from the French name *Le Système International d'Unités*), was established in 1960 by the 11th General Conference on Weights and Measures (CGPM) as the modern metric system of measurement. The core of the SI is the seven base units for the physical quantities length, mass, time, electric current, thermodynamic temperature, amount of substance, and luminous intensity. These base units are:

	SI base unit		
Base quantity	Name	Symbol	
length	meter	m	
mass	kilogram	kg	
time	second	S	
electric current	ampere	А	
thermodynamic temperature	kelvin	Κ	
amount of substance	mole	mol	
luminous intensity	candela	cd	

The SI base units are defined as follows:

- **meter:** The meter is the length of the path travelled by light in vacuum during a time interval of 1/299 792 458 of a second.
- **kilogram:** The kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram.
- **second:** The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom.
- **ampere:** The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 meter apart in vacuum, would produce between these conductors a force equal to $2 \cdot 10^{-7}$ newton per meter of length.
- **kelvin:** The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water.
- **mole:** The mole is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon 12. When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles.

candela: The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540·10¹² hertz and that has a radiant intensity in that direction of 1/683 watt per steradian.

SI derived units

Derived units are units which may be expressed in terms of base units by means of the mathematical symbols of multiplication and division (and, in the case of °C, subtraction). Certain derived units have been given special names and symbols, and these special names and symbols may themselves be used in combination with those for base and other derived units to express the units of other quantities. The next table lists some examples of derived units expressed directly in terms of base units:

	SI derived unit	
Physical quantity	Name	Symbol
area	square meter	m^2
volume	cubic meter	m ³
speed, velocity	meter per second	m/s
acceleration	meter per second squared	m/s^2
wave number	reciprocal meter	m ⁻¹
density, mass density	kilogram per cubic meter	kg/m ³
specific volume	cubic meter per kilogram	m³/kg
current density	ampere per square meter	A/m^2
magnetic field strength	ampere per meter	A/m
concentration (of amount of substance)	mole per cubic meter	mol/m ³
luminance	candela per square meter	cd/m^2
refractive index	(the number) one	1 ^(a)

^(a) The symbol "1" is generally omitted in combination with a numerical value.

For convenience, certain derived units, which are listed in the next table, have been given special names and symbols. These names and symbols may themselves be used to express other derived units. The special names and symbols are a compact form for the expression of units that are used frequently. The final column shows how the SI units concerned may be expressed in terms of SI base units. In this column, factors such as m⁰, kg⁰ ..., which are all equal to 1, are not shown explicitly.

			SI derived uni	t expressed in terms of:
Physical quantity	Name	Symbol	Other SI units	SI base units
plane angle	radian ^(a)	rad	$m \cdot m^{\text{-1}} = 1^{(b)}$	
solid angle	steradian ^(a)	sr ^(c)	$m^2 \cdot m^{-2} = 1^{(b)}$	
frequency	hertz	Hz	S ⁻¹	
force	newton	Ν	${ m m} \cdot { m kg} \cdot { m s}^{-2}$	
pressure, stress	pascal	Pa	N/m^2	$m^{-1} \cdot kg \cdot s^{-2}$
energy, work, quantity of heat	joule	J	$N \cdot m$	$m^2 \cdot kg \cdot s^{-2}$
power, radiant flux	watt	W	J/s	$m^2 \cdot kg \cdot s^{-3}$
electric charge, quantity of electricity	coulomb	С	$\mathbf{s} \cdot \mathbf{A}$	
electric potential difference, electromotive force	volt	V	W/A	$m^2 \cdot kg \cdot s^{-3} \cdot A^{-1}$
capacitance	farad	F	C/V	$m^{-2} \cdot kg^{-1} \cdot s^4 \cdot A^2$
electric resistance	ohm	Ω	V/A	$m^2 \cdot kg \cdot s^{-3} \cdot A^{-2}$
electric conductance	siemens	S	A/V	$m^{-2} \cdot kg^{-1} \cdot s^3 \cdot A^2$
magnetic flux	weber	Wb	$V \cdot s$	$m^2 \cdot kg \cdot s^{-2} \cdot A^{-1}$

International System of Units (SI)

magnetic flux density	tesla	Т	Wb/m ²	$kg \cdot s^{-2} \cdot A^{-1}$
inductance	henry	Н	Wb/A	$m^2 \cdot kg \cdot s^{-2} \cdot A^{-2}$
Celsius temperature	degree	°C		К
	Celsius ^(d)			
luminous flux	lumen	lm	$\mathrm{cd}\cdot\mathrm{sr}^{\scriptscriptstyle(c)}$	$m^2 \cdot m^{-2} \cdot cd = cd$
illuminance	lux	lx	lm/m^2	$m^2 \cdot m^{-4} \cdot cd = m^{-2} \cdot cd$
activity (of a radionuclide)	becquerel	Bq		S ⁻¹
absorbed dose, specific energy (imparted), kerma	gray	Gy	J/kg	$m^2 \cdot s^{-2}$
dose equivalent, ambient dose equivalent, directional dose equivalent, personal dose equivalent, organ equivalent dose	sievert	Sv	J/kg	$m^2 \cdot s^{\cdot 2}$
catalytic activity	katal	kat		$s^{-1} \cdot mol$

^(a) The radian and steradian may be used with advantage in expressions for derived units to distinguish between quantities of different nature

but the same dimension. Some examples of their use in forming derived units are given in the next table. ^(b) In practice, the symbols rad and sr are used where appropriate, but the derived unit "1" is generally omitted in combination with a numerical value.

^(c) In photometry, the name steradian and the symbol sr are usually retained in expressions for units.

^(d) It is common practice to express a thermodynamic temperature, symbol *T*, in terms of its difference from the reference temperature $T_0 = 273.15$ K. The numerical value of a Celsius temperature *t* expressed in degrees Celsius is given by $t/^{\circ}C = T/K-273.15$. The unit $^{\circ}C$ may be used in combination with SI prefixes, e.g., millidegree Celsius, m[']C. Note that there should never be a space between the $^{\circ}$ sign and the letter C, and that the symbol for kelvin is K, not $^{\circ}K$.

The SI derived units with special names may be used in combinations to provide a convenient way to express more complex physical quantities. Examples are given in the next table:

	S	l derived un	iit
Physical Quantity	Name	Symbol	As SI base units
dynamic viscosity	pascal second	Pa · s	$m^{-1} \cdot kg \cdot s^{-1}$
moment of force	newton meter	$N\cdot m$	$m^2 \cdot kg \cdot s^{\text{-}2}$
surface tension	newton per meter	N/m	$kg \cdot s^{-2}$
angular velocity	radian per second	rad/s	$\mathbf{m} \cdot \mathbf{m}^{\text{-1}} \cdot \mathbf{s}^{\text{-1}} = \mathbf{s}^{\text{-1}}$
angular acceleration	radian per second squared	rad/s ²	$\mathbf{m} \cdot \mathbf{m}^{-1} \cdot \mathbf{s}^{-2} = \mathbf{s}^{-2}$
heat flux density, irradiance	watt per square meter	W/m^2	kg · s ⁻³
heat capacity, entropy	joule per kelvin	J/K	$\mathrm{m}^{\text{-3}} \cdot \mathrm{kg} \cdot \mathrm{s}^{\text{-2}} \cdot \mathrm{K}^{\text{-1}}$
specific heat capacity, specific entropy	joule per kilogram kelvin	J/(kg · K)	$m^2 \cdot s^{\text{-}2} \cdot K^{\text{-}1}$
specific energy	joule per kilogram	J/kg	$m^2 \cdot s^{-2}$
thermal conductivity	watt per meter kelvin	$W/(m\cdot K)$	$\mathbf{m} \cdot \mathbf{kg} \cdot \mathbf{s}^{\text{-3}} \cdot \mathbf{K}^{\text{-1}}$
energy density	joule per cubic meter	J/m ³	$m^{\text{-1}} \cdot kg \cdot s^{\text{-2}}$
electric field strength	volt per meter	V/m	$m \cdot kg \cdot s^{\text{-}3} \cdot A^{\text{-}1}$
electric charge density	coulomb per cubic meter	C/m ³	$m^{\text{-}3} \cdot s \cdot A$
electric flux density	coulomb per square meter	C/m^2	$m^{\text{-2}} \cdot s \cdot A$
permittivity	farad per meter	F/m	$m^{-3} \cdot kg^{-1} \cdot s^4 \cdot A^2$
permeability	henry per meter	H/m	$m \cdot kg \cdot s^{\text{-2}} \cdot A^{\text{-2}}$
molar energy	joule per mole	J/mol	$m^2 \cdot kg \cdot s^{-2} \cdot mol^{-1}$
molar entropy, molar heat capacity	joule per mole kelvin	J/(mol · K)	$m^2 \cdot kg \cdot s^{-2} \cdot K^{-1} \cdot mol^{-1}$
exposure (x and γ rays)	coulomb per kilogram	C/kg	$kg^{-1}\cdot s\cdot A$
absorbed dose rate	gray per second	Gy/s	$m^2 \cdot s^{-3}$
radiant intensity	watt per steradian	W/sr	$m^{4} \cdot m^{-2} \cdot kg \cdot s^{-3}$ $= m^{2} \cdot kg \cdot s^{-3}$
radiance	watt per square meter steradian	$W/(m^2 \cdot sr)$	$m^{2} \cdot m^{-2} \cdot kg \cdot s^{-3}$ $= kg \cdot s^{-3}$
catalytic (activity) concentration	katal per cubic meter	kat/m³	$m^{-3} \cdot s^{-1} \cdot mol$

In practice, with certain quantities preference is given to the use of certain special unit names, or combinations of unit names, in order to facilitate the distinction between different quantities having the same dimension. For example, the SI unit of frequency is designated the hertz, rather than the reciprocal second, and the SI unit of angular velocity is designated the radian per second rather than the reciprocal second (in this case retaining the word radian emphasizes that angular velocity is equal to 2π times the rotational frequency). Similarly the SI unit of moment of force is designated the newton meter rather than the joule.

In the field of ionizing radiation, the SI unit of activity is designated the becquerel rather than the reciprocal second, and the SI units of absorbed dose and dose equivalent the gray and sievert, respectively, rather than the joule per kilogram. In the field of catalysis, the SI unit of catalytic activity is designated the katal rather than the mole per second. The special names becquerel, gray, sievert, and katal were specifically introduced because of the dangers to human health which might arise from mistakes involving the units reciprocal second, joule per kilogram and mole per second.

Units for dimensionless quantities, quantities of dimension one

Certain quantities are defined as the ratios of two quantities of the same kind, and thus have a dimension which may be expressed by the number one. The unit of such quantities is necessarily a derived unit coherent with the other units of the SI and, since it is formed as the ratio of two identical SI units, the unit also may be expressed by the number one. Thus the SI unit of all quantities having the dimensional product one is the number one. Examples of such quantities are refractive index, relative permeability, and friction factor. Other quantities having the unit 1 include "characteristic numbers" like the Prandtl number and numbers which represent a count, such as a number of molecules, degeneracy (number of energy levels), and partition function in statistical thermodynamics. All of these quantities are described as being dimensionless, or of dimension one, and have the coherent SI unit 1. Their values are simply expressed as numbers and, in general, the unit 1 is not explicitly shown. In a few cases, however, a special name is given to this unit, mainly to avoid confusion between some compound derived units. This is the case for the radian, steradian and neper.

SI prefixes

The following prefixes have been approved by the CGPM for use with SI units. Only one prefix may be used before a unit. Thus 10^{-12} farad should be designated pF, not $\mu\mu$ F.

Factor	Name	Symbol	Factor	Name	Symbol
10^{24}	yotta	Y	10-1	deci	d
10^{21}	zetta	Z	10-2	centi	С
10^{18}	exa	Е	10-3	milli	m
10^{15}	peta	Р	10-6	micro	μ
10^{12}	tera	Т	10-9	nano	n
10^{9}	giga	G	10-12	pico	р
10^{6}	mega	М	10-15	femto	f
10^{3}	kilo	k	10-18	atto	а
10^{2}	hecto	h	10-21	zepto	Z
10^{1}	deka	da	10-24	yocto	у

The kilogram

Among the base units of the International System, the unit of mass is the only one whose name, for historical reasons, contains a prefix. Names and symbols for decimal multiples and submultiples of the unit of mass are formed by attaching prefix names to the unit name "gram" and prefix symbols to the unit symbol "g".

Example : 10^{-6} kg = 1 mg (1 milligram) *but not* 1 µkg (1 microkilogram).

Units used with the SI

Many units that are not part of the SI are important and widely used in everyday life. The CGPM has adopted a classification of non-SI units: (1) units accepted for use with the SI (such as the traditional units of time and of angle); (2) units accepted for use with the SI whose values are obtained experimentally; and (3) other units currently accepted for use with the SI to satisfy the needs of special interests.

(1) Non-SI units accepted for use with the International System

Name	Symbol	Value in SI units
minute	min	1 min = 60 s
hour	h	1 h= 60 min = 3600 s
day	d	1 d = 24 h = 86 400 s
degree	0	$1^{\circ} = (\pi/180) \text{ rad}$
minute	,	1' = $(1/60)^{\circ} = (\pi/10\ 800)$ rad
second	"	$1" = (1/60)' = (\pi/648\ 000)$ rad
liter	l, L	$1L=1 \text{ dm}^3=10^{-3} \text{ m}^3$
metric ton	t	$1 t = 10^3 kg$
neper ^(a)	Np	1 Np = 1
bel ^(b)	В	1 B = (1/2) ln 10 Np

^(a) The neper is used to express values of such logarithmic quantities as field level, power level, sound pressure level, and logarithmic decrement. Natural logarithms are used to obtain the numerical values of quantities expressed in nepers. The neper is coherent with the SI, but is not yet adopted by the CGPM as an SI unit. In using the neper, it is important to specify the quantity.

^(b) The bel is used to express values of such logarithmic quantities as field level, power level, sound-pressure level, and attenuation. Logarithms to base ten are used to obtain the numerical values of quantities expressed in bels. The submultiple decibel, dB, is commonly used.

(2) Non-SI units accepted for use with the International system, whose values in SI units are obtained experimentally

Name	Symbol	Value in SI Units
electronvolt ^(b)	eV	1 eV = 1.602 176 53(14) $\cdot 10^{-19} J^{(a)}$
dalton ^(c)	Da	1 Da = 1.660 538 86(28) \cdot 10 ⁻²⁷ kg ^(a)
unified atomic mass		
unit ^(c)	u	1 u = 1 Da
astronomical unit ^(d)	ua	1 ua = 1.495 978 706 91(06) \cdot 10 ¹¹ m ^(a)

^(a) For the electronvolt and the dalton (unified atomic mass unit), values are quoted from the 2002 CODATA set of the Fundamental Physical Constants (p. 1-1 of this Handbook). The value given for the astronomical unit is quoted from the IERS Conventions 2003 (D.D. McCarthy and G. Petit, eds., IERS Technical Note 32, Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 200). The value of ua in meters comes from the JPL ephemerides DE403 (Standish E.M. 1995, "Report of the IAU WGAS Sub-Group on Numerical Standards", in "Highlights of Astronomy", Appenlzer ed., pp 180-184, Kluwer Academic Publishers, Dordrecht). It has been determined in "TDB" units using Barycentric Dynamical Time TDB as a time coordinate for the barycentric system.

^(b)The electronvolt is the kinetic energy acquired by an electron in passing through a potential difference of 1 V in vacuum.

(3) Other non-SI units currently accepted for use with the International System

Name	Symbol	Value in SI Units
nautical mile		1 nautical mile = 1852 m
		1 nautical mile per hour = $(1852/3600)$
knot		m/s
are		$1 a = 1 dam^2 = 10^2 m^2$
hectare	ha	$1 ha = 1 hm^2 = 10^4 m^2$
bar	bar	$1 \text{ bar} = 0.1 \text{ MPa} = 100 \text{ kPa} = 10^5 \text{ Pa}$
ångström	Å	$1 \text{ Å} = 0.1 \text{ nm} = 10^{-10} \text{ m}$
barn	b	$1 b = 100 \text{ fm}^2 = 10^{-28} \text{ m}^2$

Other non-SI units

The SI does not encourage the use of cgs units, but these are frequently found in old scientific texts. The following table gives the relation of some common cgs units to SI units.

Name	Symbol	Value in SI units
erg	erg	$1 \text{ erg} = 10^{-7} \text{ J}$
dyne	dyn	$1 \text{ dyn} = 10^{-5} \text{ N}$
poise	Р	$1P = 1 dyn \cdot s/cm^2 = 0.1 Pa \cdot s$
stokes	St	$1 \text{ St} = 1 \text{ cm}^2/\text{s} = 10^{-4} \text{ m}^2/\text{s}$
gauss	G	$1\mathrm{G} riangleq 10^{-4} \mathrm{T}$
oersted	Oe	$1 \text{ Oe} \triangleq (1000/4\pi) \text{ A/m}$
maxwell	Mx	$1Mx \triangleq 10^{-8} Wb$
stilb	sb	$1 \text{ sb} = 1 \text{ cd/cm}^2 = 10^4 \text{ cd/m}^2$
phot	ph	$1 \text{ ph} = 10^4 \text{ lx}$
gal	Gal	$1 \text{ Gal} = 1 \text{ cm/s}^2 = 10^{-2} \text{ m/s}^2$
-		

⁽c) The Dalton and unified atomic mass unit are alternative names for the same unit, equal to 1/12 of the mass of an unbound atom of the nuclide ¹²C, at rest and in its ground state. The dalton may be combined with SI prefixes to express the masses of large molecules in kilodalton, kDa, or megadalton, MDa.

^(d) The astronomical unit is a unit of length approximately equal to the mean Earth-Sun distance. It is the radius of an unperturbed circular Newtonian orbit about the Sun of a particle having infinitesimal mass, moving with a mean motion of 0.017 202 098 95 radians/day (known as the Gaussian constant).

International System of Units (SI)

Examples of other non-SI units found in the older literature and their relation to the SI are given below. Use of these units in current texts is discouraged.

Name	Symbol	Value in SI units
curie	Ci	$1 \text{ Ci} = 3.7 \cdot 10^{10} \text{ Bq}$
roentgen	R	$1 \text{ R} = 2.58 \cdot 10^{-4} \text{ C/kg}$
rad	rad	$1 \text{ rad} = 1 \text{ cGy} = 10^{-2} \text{ Gy}$
rem	rem	$1 rem = 1 cSv = 10^{-2} Sv$
X unit		1 X unit $\approx 1.002 \cdot 10^{-4} \ nm$
gamma	γ	$1 \gamma = 1 nT = 10^{-9} T$
jansky	Jy	$1Jy = 10^{-26} \ W \cdot m^{-2} \cdot Hz^{-1}$
fermi		$1 \text{ fermi} = 1 \text{ fm} = 10^{-15} \text{ m}$
metric carat		1 metric carat = 200 mg = $2 \cdot 10^{-4}$ kg
torr	Torr	1 Torr = (101325/760) Pa
standard atmosphere	atm	1 atm = 101325 Pa
calorie ^(a)	cal	1 cal = 4.184 J
micron	μ	$1 \ \mu = 1 \ \mu m = 10^{-6} \ m$

^(a) Several types of calorie have been used; the value given here is the so-called "thermochemical calorie".

References

- 1. Taylor, B. N., *The International System of Units (SI)*, NIST Special Publication 330, National Institute of Standards and Technology, Gaithersburg, MD, 2001.
- Bureau International des Poids et Mesures, *Le Système International d'Unités (SI)*, 7th French and English Edition, BIPM, Sèvres, France, 1998; 8th Edition to be published 2006.
- 3. Taylor, B. N., *Guide for the Use of the International System of Units* (*SI*), NIST Special Publication 811, National Institute of Standards and Technology, Gaithersburg, MD, 1995.
- NIST Physical Reference Data web site, <http://physics.nist.gov/cuu/Units/index.html, October 2004.

CONVERSION FACTORS

The following table gives conversion factors from various units of measure to SI units. It is reproduced from NIST Special Publication 811, *Guide for the Use of the International System of Units (SI)*. The table gives the factor by which a quantity expressed in a non-SI unit should be multiplied in order to calculate its value in the SI. The SI values are expressed in terms of the base, supplementary, and derived units of SI in order to provide a coherent presentation of the conversion factors and facilitate computations (see the table "International System of Units" in this Section). If desired, powers of ten can be avoided by using SI Prefixes and shifting the decimal point if necessary.

Conversion from a non-SI unit to a different non-SI unit may be carried out by using this table in two stages, e.g.,

Thus,

Conversion factors are presented for ready adaptation to computer readout and electronic data transmission. The factors are written as a number equal to or greater than one and less than ten with six or fewer decimal places. This number is followed by the letter E (for exponent), a plus or a minus sign, and two digits which indicate the power of 10 by which the number must be multiplied to obtain the correct value. For example:

3.523 907 E-02 is 3.523 907
$$\times 10^{-2}$$

or

0.035 239 07

Similarly:

3.386 389 E+03 is 3.386 389 $\times 10^3$

or

3 386.389

A factor in boldface is exact; i.e., all subsequent digits are zero. All other conversion factors have been rounded to the figures given in accordance with accepted practice. Where less than six digits after the decimal point are shown, more precision is not warranted.

It is often desirable to round a number obtained from a conversion of units in order to retain information on the precision of the value. The following rounding rules may be followed:

1. If the digits to be discarded begin with a digit less than 5, the digit preceding the first discarded digit is not changed.

Example: 6.974 951 5 rounded to 3 digits is 6.97

2. If the digits to be discarded begin with a digit greater than 5, the digit preceding the first discarded digit is increased by one.

Example: 6.974 951 5 rounded to 4 digits is 6.975

3. If the digits to be discarded begin with a 5 and at least one of the following digits is greater than 0, the digit preceding the 5 is increased by 1.

Example: 6.974 851 rounded to 5 digits is 6.974 9

4. If the digits to be discarded begin with a 5 and all of the following digits are 0, the digit preceding the 5 is unchanged if it is even and increased by one if it is odd. (Note that this means that the final digit is always even.)

Examples:

6.974 951 5 rounded to 7 digits is 6.974 952 6.974 950 5 rounded to 7 digits is 6.974 950

Reference

Taylor, B. N., *Guide for the Use of the International System of Units (SI)*, NIST Special Publication 811, 1995 Edition, Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402, 1995.

Factors in **boldface** are exact

To convert from	to	Multiply	v by
abampere	ampere (A)		E+01
abcoulomb	coulomb (C)		E+01
abfarad	farad (F)	1.0	E+09
abhenry	henry (H)		E-09
abmho	siemens (S)	1.0	E+09
abohm	ohm (Ω)		E-09
abvolt	volt (V)		E-08
acceleration of free fall, standard (g_{n})	meter per second squared (m/s²)		E+00
	square meter (m²)		E+03
	cubic meter (m ³)		E+03
ampere hour $(A \cdot h)$	coulomb (C)		E+03
ångström (Å)	meter (m)		E-10
ångström (Å)	nanometer (nm)		E-01
	square meter (m ²)		E+02
astronomical unit (ua or AU)	meter (m)		E+11
atmosphere, standard (atm)	pascal (Pa)		E+05
atmosphere, standard (atm)	kilopascal (kPa)		E+02
atmosphere, technical (at) ¹⁰	pascal (Pa)		E+04
atmosphere, technical (at) ¹⁰	kilopascal (kPa)		E+01

⁹ The U.S. survey foot equals (1200/3937) m. 1 international foot = 0.999998 survey foot.

¹⁰ One technical atmosphere equals one kilogram-force per square centimeter (1 at = 1 kgf/cm²).

To convert from	to	Multipl	y by
bar (bar)	pascal (Pa)	1.0	E+05
bar (bar)	kilopascal (kPa)	1.0	E+02
barn (b)	square meter (m ²)	1.0	E-28
	cubic meter (m ³)		E-01
barrel [for petroleum, 42 gallons (U.S.)](bbl)	liter (L)	1.589 873	E+02
biot (Bi)	ampere (A)	1.0	E+01
British thermal unit _{IT} (Btu _{IT}) ¹¹	joule (J)	1.055 056	E+03
	joule (J)		E+03
	joule (J)		E+03
British thermal unit (39 °F) (Btu)	joule (J)	1.059 67	E+03
British thermal unit (59 °F) (Btu)	joule (J)	1.054 80	E+03
British thermal unit (60 °F) (Btu)	joule (J)	1.054 68	E+03
British thermal unit _{IT} foot per hour square for	ot degree Fahrenheit		
$[Btu_{rr} \cdot ft/(h \cdot ft^2 \cdot \tilde{oF})]$	watt per meter kelvin $[W/(m \cdot K)]$	1.730 735	E+00
British thermal unit _{th} foot per hour square for	ot degree Fahrenheit		
	watt per meter kelvin $[W/(m \cdot K)]$	1.729 577	E+00
British thermal unit _{IT} inch per hour square fo			
$[Btu_{rr} \cdot in/(h \cdot ft^2 \cdot e^{0}F)]$	watt per meter kelvin $[W/(m \cdot K)]$	1.442 279	E-01
British thermal unit _{th} inch per hour square fo	ot degree Fahrenheit		
$[Btu, \cdot in/(h \cdot ft^2 \cdot {}^{th} F)]$	watt per meter kelvin [W/(m · K)]	1.441 314	E-01
British thermal unit _{IT} inch per second square			
$[Btu \cdot in/(s \cdot ft^2 \cdot {}^{\circ}F)]$	watt per meter kelvin $[W/(m \cdot K)]$	5.192 204	E+02
British thermal unit _{th} inch per second square			2102
	watt per meter kelvin [W/(m · K)]	5 188 732	E+02
British thermal unit _{rr} per cubic foot	wate per meter kervin [w/(m k)]		1102
(Btu $/\text{ft}^3$)	joule per cubic meter (J/m³)	3 725 895	E+04
British thermal unit _{th} per cubic foot			LTUT
	icula par cubic motor (I/m ³)	2 722 402	E+04
British thermal unit _{IT} per degree Fahrenheit	joule per cubic meter (J/m³)		LTUT
(B_{ty} / e_{E})	ioula par kalvin (I/k)	1 800 101	E+03
(Diu _{II} / 'F)	joule per kelvin (J/ k)	1.099 101	E+03
British thermal unit _{th} per degree Fahrenheit	$i_{0,1}$ and $i_{0,1}$ $i_{1,1}$	1 007 020	E . 02
(Btu _{th} / °F)	joule per kelvin (J/ k)	1.897 830	E+03
British thermal unit _{IT} per degree Rankine	i la man la la in (I/ la)	1 000 101	T . 02
	joule per kelvin (J/ k)	1.899 101	E+03
British thermal unit _{th} per degree Rankine	(1, 1, 1, 2, 4, 7, 1)	1 007 000	F 00
$(Btu_{th} / {}^{\circ}K)$	joule per kelvin (J/ k)	1.897 830	E+03
	watt (W)		E-01
	watt (W)	2.928 751	E-01
British thermal unit _{IT} per hour square foot de			
$[Btu_{IT}/(h \cdot ft^2 \cdot {}^{\circ}F)]$			
	$[W/(m^2 \cdot K)]$	5.678 263	E+00
British thermal unit _{th} per hour square foot de			
$[Btuth/(h \cdot ft^2 \cdot {}^{\circ}F)]$			
	$[W/(m^2 \cdot K)]$		E+00
	watt (W)		E+01
	joule per kilogram (J/kg)		E+03
	joule per kilogram (J/kg)	2.324 444	E+03
British thermal unit _{IT} per pound degree Fahre			
$[Btu_{IT}/(lb \cdot {}^{\circ}F)]$	joule per kilogram kelvin (J/(kg · K)]	4.1868	E+03
British thermal unit _{th} per pound degree Fahre			
$[Btu_{th}/(lb \cdot {}^{\circ}F)]$	joule per kilogram kelvin [J/(kg · K)]	4.184	E+03
British thermal unit _{rr} per pound degree Rank	ine		
$[Btu_{IT}/(lb \cdot {}^{\circ}R)]$	joule per kilogram kelvin [J/(kg · K)]	4.1868	E+03
British thermal unit, per pound degree Rank	ine		
$[Btu_{tb}/(lb \cdot R)]$	joule per kilogram kelvin [J/(kg · K)]	4.184	E+03
British thermal unit, per second (Btu, /s)	watt (W)	1.055 056	E+03
British thermal unit, per second $(Btu, /s)$	watt (W)	1.054 350	E+03
ur m			

¹¹ The Fifth International Conference on the Properties of Steam (London, July 1956) defined the International Table calorie as 4.1868 J. Therefore the exact conversion factor for the International Table Btu is 1.055 055 852 62 kJ. Note that the notation for International Table used in this listing is subscript "IT". Similarily, the notation for thermochemical is subscript "th." Further, the thermochemical Btu, Btu_{th} is based on the thermochemical calorie, cal_{th} , where $cal_{th} = 4.184$ J exactly.

To convert from	to	Multiply	u hu
British thermal unit _{rr} per second square foot α		Manupi	у Бу
$[Btu_{TT}/(s \cdot ft^2 \cdot {}^{\circ}F)]$			
$[\text{Dtu}_{\text{IT}}/(\text{S}\cdot\text{It}\cdot\text{I})]$	$[W/(m^2 \cdot K)]$	2 044 175	E+04
British thermal unit, per second square foot c		,	L+04
$[Btuth / (s \cdot ft2 \cdot °F)]$			
$[\text{Btu}_{\text{th}}/(\text{s}\cdot\text{It}^{-1}\cdot\text{F})]$	$[W/(m^2 \cdot K)]$	2 042 000	E . 04
	$[W/(M^2 \cdot K)]$	2.042 808	E+04
British thermal unit _{IT} per square foot		1 105 (50	E 04
	joule per square meter (J/m ²)	1.135 653	E+04
British thermal unit _{th} per square foot	(-())		
(Btu_{th}/ft^2)	joule per square meter (J/m²)	1.134 893	E+04
British thermal unit _{IT} per square foot hour	(())		
	watt per square meter (W/m²)	3.154 591	E+00
British thermal unit _{th} per square foot hour			
	watt per square meter (W/m²)	3.152 481	E+00
British thermal unit _{th} per square foot minute			
	watt per square meter (W/m ²)	1.891 489	E+02
British thermal unit _{IT} per square foot second			
$[(Btu_{TT}/(ft^2 \cdot s)] \dots$	watt per square meter (W/m²)	1.135 653	E+04
British thermal unit, per square foot second			
$[Btu, /(ft^2 \cdot s)]$	watt per square meter (W/m²)	1.134 893	E+04
British thermal unit _{th} per square inch second	I I I I I I I I I I I I I I I I I I I		
$[Btu /(in^2 \cdot s)]$	watt per square meter (W/m²)	1.634 246	E+06
	cubic meter (m ³)		E-02
	liter (L)		E+01
			L+01
calorie ₁₁₇ (cal ₁₁₇) ¹¹	joule (J)	4.1868	E+00
calorie, (cal,) ¹¹	joule (J)	4.184	E+00
calorie (cal) (mean)	joule (J)	4.190 02	E+00
	joule (J)		E+00
	joule (J)		E+00
	joule (J)		E+03
calorie kilogram (nutrition) ¹²	joule (J)	4.184	E+03
calorie (mean) kilogram (nutrition) ¹²	joule (J)	4 190 02	E+03
calorie, per centimeter second degree Celsius		1.190 02	LIUS
	, watt per meter kelvin [W/(m · K)]	A 18A	E+02
	joule per kilogram (J/kg)		E+02
			E+03
	joule per kilogram (J/kg)	4.104	E+03
calorie _{IT} per gram degree Celsius		4 10 60	F. 02
$[cal_{TT}/(g \cdot C)]$	joule per kilogram kelvin [J/(kg · K)]	4.1868	E+03
calorie _{th} per gram degree Celsius	· 1 1·1 1 1·[T//] T/\]	4 10 4	Гор
	joule per kilogram kelvin $[J/(kg \cdot K)]$		E+03
	joule per kilogram kelvin [J /(kg · K)]		E+03
	joule per kilogram kelvin [J /(kg · K)]		E+03
calorie _{th} per minute (cal _{th} /min)	watt (W)	6.973 333	E-02
	watt (W)		E+00
	joule per square meter (J/m ²)	4.184	E+04
calorie _{th} per square centimeter minute			
$[\operatorname{cal}_{\operatorname{th}}/(\operatorname{cm}^2 \cdot \operatorname{min})]$	watt per square meter (W/m ²)	6.973 333	E+02
calorie th per square centimeter second			
$[cal_{tb}/(cm^2 \cdot s)]$	watt per square meter (W/m²)	4.184	E+04
	candela per square meter (cd/m ²)		E+03
	kilogram (kg)		E-04
	gram (g)		E-01
	pascal (Pa)		E+03
	kilopascal (kPa)		E+00
	³ ascal (Pa)		E+03
	······································		1.50

¹² The kilogram calorie or "large calorie" is an obsolete term used for the kilocalorie, which is the calorie used to express the energy content of foods. However, in practice, the prefix "kilo" is usually omitted.

¹³ Conversion factors for mercury manometer pressure units are calculated using the standard value for the acceleration of gravity and the density of mercury at the stated temperature. Additional digits are not justified because the definitions of the units do not take into account the compressibility of mercury or the change in density caused by the revised practical temperature scale, ITS-90. Similar comments also apply to water manometer pressure units. Conversion factors for conventional mercury and water manometer pressure units are based on ISO 31-3.

To convert from		Multiply	•
	³ kilopascal (kPa)		E+00
centimeter of water $(4 \circ C)^{-1}$	pascal (Pa) pascal (Pa)		E+01
	pascal (Pa) pascal second (Pa · s)		E+01 E-03
	meter squared per second (m ² /s)		E-05 E-06
	meter squared per second (m-/s)		E-06 E+01
	square meter (m ²)		E+01 E-10
	square meter (m²) square millimeter (mm²)		
			E-04
	square meter kelvin per watt ($m^2 \cdot K/W$)		E-01
. ,	cubic meter (m^3)		E+00
	cubic meter (m^3)		E-02
	cubic meter per second (m ³ /s)		E-04
	liter per second (L/s)		E-01
	cubic meter per second (m ³ /s)		E-02
	cubic meter (m ³)		E-05
	cubic meter per second (m ³ /s)		E-07
	cubic meter (m ³)		E+09
	cubic meter (m ³)		E-01
	cubic meter per second (m ³ /s)		E-02
	cubic meter (m ³)		E-04
	liter (L)		E-01
	milliliter (mL)		E+02
curie (Ci)	becquerel (Bq)	3.7	E+10
langer 15	meter squared (m ²)	0.960.000	E-13
	second (s)		
			E+04
	second (s)		E+04
	coulomb meter $(C \cdot m)$		E-30
	radian (rad)		E-02
	kelvin (K)		
	kelvin (K)		E+00
	degree Celsius (°C)		
	degree Celsius (°C)		E+00
	degree Celsius (°C)		
	kelvin (K)		
	degree Celsius (°C)		E-01
	kelvin (K)	5.555 556	E-01
legree Fahrenheit hour per British thermal ur			
$(^{\circ}F \cdot h/Btu_{_{IT}})$	kelvin per watt (K/W)	1.895 634	E+00
legree Fahrenheit hour per British thermal ur	hit _{th}		
$(^{\circ}F \cdot h/Btu_{th})$	kelvin per watt (K/W)	1.896 903	E+00
legree Fahrenheit hour square foot per Britisl			
$(^{\circ}F \cdot h \cdot ft^2 / Btu_{_{TT}})$	square meter kelvin per watt (m $^2 \cdot K/W$)	1.761 102	E-01
legree Fahrenheit hour square foot per Britisl			
$({}^{\circ}F \cdot h \cdot ft^2 / Btu_{th})$	square meter kelvin per watt (m² · K/W)	1.762 280	E-01
legree Fahrenheit hour square foot per Britisl			
	meter kelvin per watt (m \cdot K/W)	6.933 472	E+00
legree Fahrenheit hour square foot per Britisl			
	meter kelvin per watt (m · K/W)	6.938 112	E+00
legree Fahrenheit second per British thermal	unit		
	kelvin per watt (K/W)	5.265.651	E-04
legree Fahrenheit second per British thermal			_ •1
	kelvin per watt (K/W)	5 269 175	E-04
legree Rankine (°R)	kelvin (K)	$T/K = (T/ \circ R)$	
	kelvin (K)		E-01
	kilogram per meter (kg/m)		E-01 E-07
	gram per meter (g/m)		E-07 E-04
			E-04 E-05
	newton (N)		
	newton meter (N \cdot m)		E-07 E-01

 $^{\scriptscriptstyle 14}$ The exact conversion factor is 1.638 706 4 E–05.

 $^{\rm 15}$ The darcy is a unit for expressing the permeability of porous solids, not area.

¹⁶ The centigrade temperature scale is obsolete; the degree centigrade is only approximately equal to the degree Celsius.

To convert from	to	Multiply	
	joule (J)		E-19
	farad (F)		E+09
	ampere (A)		E+01
	volt (V)		E-08
	henry (H)		E-09
	ohm (Ω)		E-09
	joule (J)		E-07
	watt (W)	1.0	E-07
erg per square centimeter second			
	watt per square meter (W/m²)		E-03
	farad (F)		E-12
	ampere (A)		E-10
	volt (V)		E+02
	henry (H)		E+11
ESU of resistance (statohm)	ohm (Ω)	8.987 552	E+11
faraday (based on carbon 12)	coulomb (C)	0 648 521	E+04
fathom (based on US survey foot) ⁹	meter (m)	1 020 004	E+04 E+00
	meter (m)		E+00 E-15
	femtometer (fm)		E+00
	cubic meter (m ³)		E-05
	milliliter (mL)		E+01
	meter (m)		E-01
	meter (m)		E-01
	lux (lx)		E+01
	candela per square meter (cd/m ²)		E+00
	pascal (Pa)		E+04
	kilopascal (kPa)		E+01
	pascal (Pa)		E+03
	kilopascal (kPa)		E+00
foot of water, conventional $(ftH_2O)^{13}$	pascal (Pa)	2.989 067	E+03
	kilopascal (kPa)		E+00
	meter per second (m/s)		E-05
	meter per second (m/s)		E-03
	meter per second (m/s)		E-01
	meter per second squared (m/s ²)		E-01
	joule (J)		E-02
	joule (J)		E+00
	watt (W)		E-04
	watt (W)		E-02
	watt (W)		E+00
	meter to the fourth power (m^4)		E-03
franklin (Fr)	coulomb (C)	3.335 641	E-10
gal (Gal)	meter per second squared (m/s²)	1.0	E-02
	cubic meter (m ³)		E-03
	liter (L)		E+00
	cubic meter (m ³)		E-03
	liter (L)		E+00
	cubic meter per second (m ³ /s)		E-08
	liter per second (L/s)		E-05
gallon (U.S.) per horsepower hour	For second (2, s) minimum minimum minimum		2 00
	cubic meter per joule (m³/J)	1.410 089	E-09
gallon (U.S.) per horsepower hour	survey of the four per joure (in ,))		1 07
	liter per joule (L/ J)	1,410,089	E-06
	cubic meter per second (m ³ /s)		E-00
	liter per second (L/ s)		E-03 E-02
	tesla (T)		E-02 E-09
	tesla (T)		E-04
	ampere (A)		E-01
5			

¹⁷ This is a unit for the quantity second moment of area, which is sometimes called the "moment of section" or "area moment of inertia" of a plane section about a specified axis.

To convert from	to	Multiply	by
gill [Canadian and U.K (Imperial)] (gi)	cubic meter (m ³)		E-04
	liter (L)		E-01
	cubic meter (m ³)		E-04
	liter (L)		E-01
	radian (rad)		E-02
	degree (angle) (°)		E-01
	kilogram (kg)		E-05
	milligram (mg)		E+01
	kilogram per cubic meter (kg/m ³)		E-02
	milligram per liter (mg/L)		E+01
gram-force per square centimeter (gf $/cm^2$).	pascal (Pa)		E+01
gram per cubic centimeter (g/cm ³)	kilogram per cubic meter (kg/m³)	1.0	E+03
<i>hectare</i> (ha)	square meter (m ²)	1.0	E+04
	watt (W)		E+02
	watt (W)		E+03
	watt (W)		E+02
horsepower (metric)	watt (W)	7.354 988	E+02
horsepower (U.K.)	watt (W)	7.4570	E+02
horsepower (water)	watt (W)	7.460 43	E+02
<i>hour</i> (h)	second (s)	3.6	E+03
hour (sidereal)	second (s)		E+03
hundredweight (long, 112 lb)	kilogram (kg)	5.080 235	E+01
hundredweight (short, 100 lb)	kilogram (kg)		E+01
	meter (m)		Г 00
			E-02
	centimeter (cm) pascal (Pa)		E+00 E+03
	pascal (ra) kilopascal (kPa)		E+03 E+00
	pascal (Pa)		E+00 E+03
	kilopascal (kPa)		E+03
	pascal (Pa)		E+00
	kilopascal (kPa)		E+00
	pascal (Pa)		E+00 E+02
	pascal (Pa)		E+02
	pascal (Pa)		E+02
	meter per second (m/s)		E-02
	meter per second squared (m/s ²)		E-02
	meter to the fourth power (m^4)		E-07
- · · · ·	- · · ·		
	reciprocal meter (m ⁻¹)		E+02
	degree Celsius (°C)		
	joule (J)		E+03
	joule (J)		E+03
	joule (J)		E+03
	watt (W)		E+01
	watt (W)		E+03
	newton (N)		E+00
	newton meter $(N \cdot m)$		E+00
kilogram-force per square centimeter $(1 - 1)^{-1}$	1 (D)	0.000005	E.04
	pascal (Pa)		E+04
kilogram-force per square centimeter	kilonagoal (kDa)	0.806.65	E . 01
	kilopascal (kPa) pascal (Pa)		E+01 E+00
	pascai (ra)		E+00
kilogram-force per square millimeter	pascal (Da)	0 806 65	E 106
(kgi/mm²)kilogram-force per square millimeter	pascal (Pa)		E+06
	megapascal (MPa)	0 806 65	E+00
(kgi/mm ²) kilogram-force second squared per meter	megapascai (wira)		L+00
	kilogram (kg)	0 806 65	E+00
	Kilogram (kg) meter per second (m/s)		E+00 E-01
	inclei pei secona (in/s)		
	newton (N)	0 206 65	ETUU
kilowatt hour (kW, b)	ioule (I)		E+00 E+06
	newton (N) joule (J) megajoule (MJ)	3.6	E+00 E+06 E+00

To convert from	to	Multiply	v bv
	newton (N)		E+03
	kilonewton (kN)		E+00
	pascal (Pa)		E+06
	kilopascal (kPa)		E+03
	meter per second (m/s)		E-01
	candela per square meter (cd/m²)		
	joule per square meter (J/m ²)		E+03 E+04
	meter (m)		E+04 E+15
	cubic meter (m ³)		
	lux (lx)		E-03 E+01
	weber (Wb)		E-08
	siemens (S)		E+00
	meter (m)		E-08
	micrometer (µm)		E-02
	meter (m)		E-06
	micrometer (µm)		E+00
	meter (m)		E-05
	millimeter (mm)		E-02
	radian (rad)		E-04
	degree (°)		E-02
	meter (m)		E+03
	kilometer (km)		E+00
	meter (m)		E+03
	kilometer (km)		E+00
	meter (m)		E+03
mile per gallon (U.S.) (mpg) (mi/gal)	meter per cubic meter (m/m ³)	4.251 437	E+05
	kilometer per liter (km/L)		E-01
mile per gallon (U.S.) (mpg) (mi/gal) ²²	liter per 100 kilometer (L/100 km)		
		of miles pe	
	meter per second (m/s)		E-01
	kilometer per hour (km/h)		E+00
	meter per second (m/s)		E+01
	meter per second (m/s)		E+03
	pascal (Pa)		E+02
	kilopascal (kPa)		E-01
	¹³ pascal (Pa)		E+02
	pascal (Pa)		E+00
	radian (rad)		E-04
	second (s)		E+01
	second (s)		E+01
	ampere per meter (A/m)		E+01
	ohm meter $(\Omega \cdot m)$		E-02
	ohm meter $(\Omega \cdot m)$	1.662 426	E-09
ohm circular-mil per foot			
	$(\Omega \cdot mm^2/m)$		E-03
	kilogram (kg)		E-02
	gram (g)		E+01
	kilogram (kg)		E-02
	gram (g)	3.110 348	E+01
ounce [Canadian and U.K fluid (Imperial)]	gubia matar (m ³)	2 0 4 1 206	E OF
ounce [Canadian and U.K fluid (Imperial)]	cubic meter (m ³)	2.041 000	E-05
	milliliter (mL)	2 941 206	E+01
(11 02)	IIIIIIIIter (IIIL)		L+01

 $^{\rm 18}$ The exact conversion factor is $10^4/\pi.$

¹⁹ This conversion factor is based on 1 d = 86 400 s; and 1 Julian century = 36 525 d. (See *The Astronomical Almanac for the Year 1995*, page K6, U.S. Government Printing Office, Washington, DC, 1994).

²⁰ In 1964 the General Conference on Weights and Measures reestablished the name "liter" as a special name for the cubic decimeter. Between 1901 and 1964 the liter was slightly larger (1.000 028 dm³); when one uses high-accuracy volume data of that time, this fact must be kept in mind.

²¹ The value of this unit, 1 nautical mile = 1852 m, was adopted by the First International Extraordinary Hydrographic Conference, Monaco, 1929, under the name "International nautical mile."

 $^{\rm 22}$ For converting fuel economy, as used in the U.S., to fuel consumption.

To convert from	to	Multiply	•
	cubic meter (m ³)		E-05
	milliliter (mL)		E+01
	newton (N)		E-01
	newton meter $(N \cdot m)$		E-03
	millinewton meter (mN \cdot m)		E+00
	kilogram per cubic meter (kg/m³)	1.729 994	E+03
ounce (avoirdupois) per gallon [Canadian and	1 kilogram per cubic meter (kg/m³)	())()))	Π.00
U.K (Imperial)] (02/gal)	knogram per cubic meter (kg/m²)		E+00
ounce (avoirdupois) per gallon [Canadian and	gram per liter (g/L)	6 226 022	E . 00
	kilogram per cubic meter (kg/m ³)		E+00 E+00
			E+00 E+00
	gram per liter (g/L) kilogram per square meter (kg/m²)		E+00 E-01
	kilogram per square meter (kg/m ²)		E=01 E+01
			E+01 E-02
	kilogram per square meter (kg/m²)		E-02
	meter (m)		E+16
	cubic meter (m ³)		E-03
peck (U.S.) (pk)	liter (L)		E+00
pennyweight (dwt)	kilogram (kg)	1.555 174	E-03
pennyweight (dwt)	gram (g)	1.555 174	E+00
perm (0 °C)	kilogram per pascal second square meter		
	$[kg/(Pa \cdot s \cdot m^2)]$		E-11
perm (23 °C)			
	$[kg/(Pa \cdot s \cdot m^2)]$		E-11
perm inch (0 °C)	kilogram per pascal second meter		
	$[kg/(Pa \cdot s \cdot m)]$		E-12
perm inch (23 °C)	kilogram per pascal second meter		
	$[kg/(Pa \cdot s \cdot m)]$		E-12
	lux (lx)		E+04
	meter (m)		E-03
	millimeter (mm)		E+00
	meter (m)		E-03
	millimeter (mm)		E+00
	cubic meter (m ³)		E-04
	liter (L)		E-01
	cubic meter (m ³)		E-04
	liter (L)		E-01
	meter (m)		E-04
	millimeter (mm)		E-01
	meter (m)		E-04
	millimeter (mm)		E-01
	pascal second (Pa \cdot s)		E-01
	kilogram (kg)		E-01
	kilogram (kg)		E-01
	newton (N)		E-01
	pascal (Pa)		E+00
	pascal second (Pa \cdot s)		E+00
	kilogram meter squared (kg \cdot m ²)		E-02
	newton (N)		E+00
	newton meter $(N \cdot m)$		E+00
	newton meter per meter (N \cdot m/m)		E+01
	newton meter $(N \cdot m)$		E-01
	newton meter per meter $(N \cdot m/m)$		E+00
	newton per meter (N/m)		E+01
	newton per meter (N/m)	1.751 268	E+02
pound-force per pound		0.000	T 66
	newton per kilogram (N/kg)		E+00
	pascal (Pa)		E+01
pound-force per square inch (psi) (lbf/lh²)	pascal (Pa)	0.894 /5/	E+03

²³ The exact conversion factor is 4.535 923 7 E–01. All units that contain the pound refer to the avoirdupois pound unless otherwise specified.

²⁴ If the local value of the acceleration of free fall is taken as $g_n = 9.806\ 65\ m/s^2$ (the standard value), the exact conversion factor is 4.448 221 615 260 5 E+00.

To convert from	to	Multiply	y by
pound-force per square inch (psi) (lbf/in ²)	kilopascal (kPa)		E+00
pound-force second per square foot	-		
$(lbf \cdot s/ft^2)$	pascal second (Pa · s)	4.788 026	E+01
pound-force second per square inch			
	pascal second (Pa \cdot s)		E+03
	kilogram meter squared (kg \cdot m ²)		E-04
	kilogram per cubic meter (kg/m³)		E+01
	kilogram per cubic meter (kg/m³)		E+04
	kilogram per cubic meter (kg/m ³)		E-01
	kilogram per meter (kg/m)		E+00
	pascal second (Pa \cdot s)		E-04
	pascal second (Pa · s)	1.488 164	E+00
pound per gallon [Canadian and			
	kilogram per cubic meter (kg/m³)	9.977 637	E+01
pound per gallon [Canadian and			
	kilogram per liter (kg/L)		E-02
	kilogram per cubic meter (kg/m ³)		E+02
	kilogram per liter (kg/L)		E-01
	kilogram per joule (kg/J)		E-07
	kilogram per second (kg/s)		E-04
	kilogram per meter (kg/m)		E+01
	kilogram per second (kg/s)		E-03
	kilogram per second (kg/s)		E-01
	kilogram per square meter (kg/m²)		E+00
pound per square inch (<i>not</i> pound-force)		7.000 (0(E . 00
	kilogram per square meter (kg/m ²)		E+02
	kilogram per meter (kg/m)		E-01
	pascal (Pa)		E+03
psi (pound-force per square inch) (lbf/lh ²)	kilopascal (kPa)		E+00
quad (10 ¹⁵ Btu _{rr}) ¹¹	joule (J)	1.055 056	E+18
quart (U.S dry) (dry qt)	cubic meter (m ³)	1.101 221	E-03
	liter (L)		E+00
quart (U.S liquid) (liq qt)	cubic meter (m ³)	9.463 529	E-04
quart (U.S liquid) (liq qt)	liter (L)	9.463 529	E-01
	gray (Gy)		гор
	sievert (Sv)		E-02 E-02
	radian (rad)		E-02 E+00
	radian per second (rad/s)		
	reciprocal pascal second [$(Pa \cdot s)^{-1}$]		E–01 E+01
	meter (m)		E+01 E+00
	coulomb per kilogram (C/kg)		E+00 E-04
	radian per second (rad/s)		E-04 E-01
Tpin (revolution per minute) (r/min)	faulali per secoliu (fau/s)	1.047 190	L-01
	radian (rad)		E-06
	second (s)		E-01
shake	second (s)	1.0	E-08
	nanosecond (ns)		E+01
	kilogram (kg)		E+01
slug per cubic foot (slug/ft ³)	kilogram per cubic meter (kg/m³)	5.153 788	E+02
	pascal second (Pa · s)		E+01
	square meter (m ²)		E-02
	square meter per second (m ² /s)		E-05
	square meter per second (m ² /s)		E-02
	square meter (m ²)		E-04
	square centimeter (cm ²)		E+00
	square meter (m ²)		E+06
	square kilometer (km²)	2.589 988	E+00
square mile			
	square meter (m ²)	2.589 998	E+06
square mile			-
(based on U.S survey foot) (mi ²) ⁹	square kilometer (km²)	2.589 998	E+00

To convert from	to	Multiply	by
square yard (yd²)	square meter (m²)		E-01
statampere	ampere (A)		E-10
statcoulomb	coulomb (C)		E-10
statfarad	farad (F)		E-12
stathenry	henry (H)		E+11
statmho	siemens (S)	1.112 650	E-12
statohm	ohm (Ω)		E+11
	volt (V)		E+02
stere (st)	cubic meter (m ³)	1.0	E+00
stilb (sb)	candela per square meter (cd/m²)	1.0	E+04
stokes (St)	meter squared per second (m²/s)	1.0	E-04
	cubic meter (m ³)		E-05
	milliliter (mL)		E+01
teaspoon	cubic meter (m ³)		E-06
	milliliter (mL)		E+00
	kilogram per meter (kg/m)		E-06
	joule (J)		E+08
	joule (J)		E+08
	kilogram (kg)		E-02
	gram (g)		E+01
	newton (N)		E+03
	kilonewton (kN)		E+00
	kilogram (kg)		E+03
	kilogram per cubic meter (kg/m³)		E+03
	kilogram (kg)		E+03
	kilogram (kg)		E+03
			E+03
	joule (J)		E+09
	cubic meter (m ³)		E+00
	kilogram (kg)		E+02
	kilogram per cubic meter (kg/m ³)		E+03
	kilogram per second (kg/s)		E-01
	pascal (Pa)		E+02
unit pole	weber (Wb)		E-07
	joule (J)		E+03
	watt per square meter (W/m²)		E+04
	watt per square meter (W/m²)		E+03
watt second (W \cdot s)	joule (J)	1.0	E+00
	meter (m)		E-01
	second (s)		E+07
	second (s)		E+07
year (tropical)	second (s)		E+07

²⁵ The therm (EC) is legally defined in the Council Directive of 20 December 1979, Council of the European Communities (now the European Union, EU). The therm (U.S.) is legally defined in the Federal Register of July 27, 1968. Although the therm (EC), which is based on the International Table Btu, is frequently used by engineers in the United States, the therm (U.S.) is the legal unit used by the U.S natural gas industry.

 $^{^{\}rm 26}$ Defined (not measured) value.

CONVERSION OF TEMPERATURES

From	То	
Celsius	Fahrenheit	$t_{\rm F}^{\prime}$ °F = (9/5) t /°C + 32
	Kelvin	T/K = t/°C + 273.15
	Rankine	$T/^{\circ}R = (9/5) (t/^{\circ}C + 273.15)$
Fahrenheit	Celsius	$t/^{\circ}C = (5/9) [(t_{F}/^{\circ}F) - 32]$
	Kelvin	$T/K = (5/9) [(t_F/°F) - 32] + 273.15$
	Rankine	$T/^{\circ}R = t_{\rm F}/^{\circ}F + 459.67$
Kelvin	Celsius	$t/^{\circ}C = T/K - 273.15$
	Rankine	$T/^{\circ}R = (9/5) T/K$
Rankine	Fahrenheit	$t_{\rm F}^{}{ m {}^{\circ}F} = T^{}{ m {}^{\circ}R} - 459.67$
	Kelvin	$T/K = (5/9) T/^{\circ}R$

Definition of symbols:

- *T* = thermodynamic (absolute) temperature
- t =Celsius temperature (the symbol θ is also used for Celsius temperature)
- $t_{\rm F}$ = Fahrenheit temperature

Designation of Large Numbers

	U.S.A.	Other countries
10^{6}	million	million
10 ⁹	billion	milliard
10^{12}	trillion	billion
10^{15}	quadrillion	billiard
10^{18}	quintillion	trillion
100^{100}	googol	
10^{googol}	googolplex	

CONVERSION FACTORS FOR ENERGY UNITS

If greater accuracy is required, use the Energy Equivalents section of the Fundamental Physical Constants table.

	Wavenumber $\overline{\nu}$ cm ⁻¹	Frequency v MHz	Energy <i>E</i> aJ	Energy E eV	Energy E E _h	Molar energy $E_{\rm m}$ kJ/mol	Molar energy $E_{\rm m}$ kcal/mol	Temperature <i>T</i> K
$\bar{\nu}$: 1 cm ⁻¹	$\doteq 1$	2.997925×10^4	1.986447×10^{-5}	$1.239842 imes 10^{-4}$	$4.556335 imes 10^{-6}$	11.96266×10^{-3}	$2.85914 imes 10^{-3}$	1.438769
<i>v</i> : 1 MHz	$\doteq 3.33564 \times 10^{\scriptscriptstyle -5}$	1	$6.626076 \times 10^{_{-10}}$	4.135669×10^{9}	$1.519830 \times 10^{_{-10}}$	$3.990313 imes 10^{-7}$	$9.53708 imes 10^{-8}$	4.79922×10^{-5}
1 aJ	\doteq 50341.1	1.509189×10^9	1	6.241506	0.2293710	602.2137	143.9325	7.24292×10^4
<i>E</i> : 1 eV	$\doteq 8065.54$	$2.417988\times10^{\scriptscriptstyle 8}$	0.1602177	1	3.674931×10^{-2}	96.4853	23.0605	1.16045×10^4
$E_{\rm h}$	\doteq 219474.63	6.579684×10^{9}	4.359748	27.2114	1	2625.500	627.510	$3.15773\times10^{\scriptscriptstyle 5}$
$E_{\rm m}$: 1 kJ/mol	$\doteq 83.5935$	2.506069×10^{6}	1.660540×10^{-3}	$1.036427 \times 10^{_{-2}}$	$3.808798 imes 10^{-4}$	1	0.239006	120.272
1 kcal/	\doteq 349.755	1.048539×10^7	$6.947700 imes 10^{-3}$	4.336411×10^{2}	$1.593601 imes 10^{-3}$	4.184	1	503.217
mol								
<i>T</i> : 1 K	$\doteq 0.695039$	2.08367×10^4	1.380658×10^{-5}	$8.61738\times10^{\scriptscriptstyle -5}$	3.16683×10^{-6}	8.31451×10^{-3}	1.98722×10^{-3}	1

Examples of the use of this table:

 $1 \text{ aJ} \doteq 50341 \text{ cm}^{-1}$

$$1 \text{ eV} \doteq 96.4853 \text{ kJ mol}^{-1}$$

The symbol \doteq should be read as meaning corresponds to or is equivalent to.

 $E = hv = hc\overline{v} = kT$; $E_{\rm m} = N_{\rm A}E$; $E_{\rm h}$ is the Hartree energy

CONVERSION FACTORS FOR PRESSURE UNITS

	Pa	kPa	MPa	bar	atmos	Torr	μmHg	psi
Ра	1	0.001	0.000001	0.00001	9.8692×10^{-6}	0.0075006	7.5006	0.0001450377
kPa	1000	1	0.001	0.01	0.0098692	7.5006	7500.6	0.1450377
MPa	1000000	1000	1	10	9.8692	7500.6	7500600	145.0377
bar	100000	100	0.1	1	0.98692	750.06	750060	14.50377
atmos	101325	101.325	0.101325	1.01325	1	760	760000	14.69594
Torr	133.322	0.133322	0.000133322	0.00133322	0.00131579	1	1000	0.01933672
μmHg	0.133322	0.000133322	1.33322×10^{-7}	1.33322×10^{-6}	$1.31579 imes 10^{-6}$	0.001	1	$1.933672 \times 10^{_{-5}}$
psi	6894.757	6.894757	0.006894757	0.06894757	0.068046	51.7151	51715.1	1

To convert a pressure value from a unit in the left hand column to a new unit, multiply the value by the factor appearing in the column for the new unit. For example:

> 1 kPa = 9.8692×10^{-3} atmos 1 Torr = 1.33322×10^{-4} MPa

Notes: μ mHg is often referred to as "micron"

Torr is essentially identical to mmHg

- psi is an abbreviation for the unit pound–force per square inch
- psia (as a term for a physical quantity) implies the true (absolute) pressure
- psig implies the true pressure minus the local atmospheric pressure

CONVERSION FACTORS FOR THERMAL CONDUCTIVITY UNITS

MULTIPLY ↓ bv

Btu _{rr} h ⁻¹ ft ⁻¹ °F ⁻¹	Btu _{rr} in. h ⁻¹ ft ⁻² °F ⁻¹	Btu _{th} h ⁻¹ ft ⁻¹ °F ⁻¹	Btu _{th} in. h⁻¹ ft⁻² °F⁻¹	cal _{ir} s ⁻¹ cm ⁻¹ °C ⁻¹	cal _{th} s ⁻¹ cm ⁻¹ °C ⁻¹	kcal _տ h ⁻¹ m ⁻¹ °C ⁻¹	J s ⁻¹ cm ⁻¹ K ⁻¹	W cm ⁻¹ K ⁻¹	W m ⁻¹ K ⁻¹	mW cm ⁻¹ K ⁻¹
1	12	1.00067	12.0080	4.13379×10⁻³	4.13656×10⁻³	1.48916	1.73073×10 ^{-₂}	1.73073×10⁻²	1.73073	17.3073
8.33333×10 ⁻²	1	8.33891×10 ⁻²	1.00067	3.44482×10 ⁻⁴	3.44713×10 ⁻⁴	0.124097	1.44228×10⁻³	1.44228×10-3	0.144228	1.44228
0.999331	11.9920	1	12	4.13102×10⁻³	4.13379×10⁻³	1.48816	1.72958×10 ^{-₂}	1.72958×10-2	1.72958	17.2958
8.32776×10 ⁻²	0.999331	8.33333×10 ⁻²	1	3.44252×10 ⁻⁴	3.44482×10 ⁻⁴	0.124014	1.44131×10⁻³	1.44131×10⁻³	0.144131	1.44131
2.41909×10 ²	2.90291×103	2.42071×10 ²	2.90485×103	1	1.00067	3.60241×10 ²	4.1868	4.1868	4.1868×10 ²	4.1868×103
2.41747×10 ²	2.90096×103	2.41909×10 ²	2.90291×103	0.999331	1	3.6×10 ²	4.184	4.184	4.184×10 ²	4.184×10 ³
0.671520 57.7789 57.7789 0.577789 5.77789×10 ⁻²	8.05824 6.93347×10 ² 6.93347×10 ² 6.93347 0.693347	0.671969 57.8176 57.8176 0.578176 5.78176×10 ⁻²	8.06363 6.93811×10 ² 6.93811×10 ² 6.93811 0.693811	2.77592×10 ⁻³ 0.238846 0.238846 2.38846×10 ⁻³ 2.38846×10 ⁻⁴	2.77778×10 ⁻³ 0.239006 0.239006 2.39006×10 ⁻³ 2.39006×10 ⁻⁴	1 86.0421 86.0421 0.860421 8.60421×10 ⁻²	1.16222×10 ⁻² 1 1 1×10 ⁻² 1×10 ⁻³	1.16222×10 ⁻² 1 1 1×10 ⁻² 1×10 ⁻³	1.16222 1×10 ² 1×10 ² 1 0.1	11.6222 1×10 ³ 1×10 ³ 10 1
	Bturn h-1 ft-1 °F-1 1 8.33333×10-2 0.999331 8.32776×10-2 2.41909×10 ² 2.41909×10 ² 2.41747×10 ² 0.671520 57.7789 57.7789 0.577789	Btur, in. Btur, in. 1 12 8.33333×10 ⁻² 1 0.999331 11.9920 8.32776×10 ⁻² 0.999331 2.41909×10 ² 2.90291×10 ³ 2.41747×10 ² 2.90096×10 ³ 0.671520 8.05824 57.7789 6.93347×10 ² 0.577789 6.93347	Btu, ft-1 Btu, ft-2 Btu, ft-2 Btu, ft-1 Btu, ft-1 <t< td=""><td>Btu, ft-1 Btu, ft-1 f</td><td>Bturn Bturnin Bturnin Bturnin Calrs Calrs 1 12 1.00067 12.0080 4.13379×10⁻³ 8.33333×10⁻² 12 8.33891×10⁻² 1.00067 3.44482×10⁻³ 0.999331 11.9920 1 12 4.13102×10⁻³ 8.32776×10⁻² 0.999331 8.3333×10⁻² 1 3.44252×10⁻⁴ 2.41909×10² 0.909311 8.3333×10⁻² 1 3.44252×10⁻⁴ 2.41707×10² 2.90291×10³ 2.42071×10² 2.90485×10³ 1 2.41707×10² 2.90096×10³ 2.41090×10² 2.90291×10³ 0.999331 0.671520 8.05824 0.671969 8.06363 2.77592×10⁻³ 57.7789 6.93347×10² 57.8176 6.93811×10² 0.23846 0.577789 6.93347×10² 57.8176 6.93811×10² 0.23846</td><td>Btu_m Btu_m in. h⁻¹ ft⁻² °F⁻¹ Btu_m h⁻¹ ft⁻¹ °F⁻¹ Btu_m in. h⁻¹ ft⁻² °F⁻¹ cal_m s⁻¹ cm⁻¹ °C⁻¹ 1 12 1.00067 12.0080 4.13379×10⁻³ 4.13656×10⁻³ 8.33333×10⁻² 1 8.33891×10⁻² 1.00067 3.44482×10⁴ 3.44713×10⁴ 0.999331 11.9920 1 12 4.13102×10³ 4.13379×10⁻³ 8.32776×10⁻² 0.999331 8.3333×10⁻² 1 3.44482×10⁴ 3.44482×10⁴ 2.41909×10² 2.90291×10³ 2.42071×10² 2.90485×10³ 1.4 1.00067 2.41747×10² 2.90096×10³ 2.41909×10² 2.90291×10³ 0.999331 1 0.671520 8.05824 0.671969 8.06363 2.77592×10⁻³ 2.77778×10⁻³ 57.7789 6.93347×10² 57.8176 6.93811×10² 0.238846 0.239006 0.577789 6.93347 57.8176 6.93811×10² 2.3846 0.239006 0.577789 6.93347 0.578176 6.93811×10² 2.3846 0.239006 </td></t<> <td>Btu_m Btu_m in. Btu_m in. Btu_m in. Cal_m s⁻¹ Cal_m s⁻¹ Cal_m s⁻¹ Kcal_m h⁻¹ 1 12 1.00067 12.0080 4.13379×10⁻³ 4.13656×10⁻³ 1.48916 8.33333×10⁻² 1 8.33891×10⁻² 1.00067 3.44482×10⁻⁴ 3.44713×10⁻⁴ 0.124097 0.999331 11.9920 1 12 4.13102×10⁻³ 4.13379×10⁻³ 1.48816 8.32776×10⁻² 0.999331 8.3333×10⁻² 1 3.44252×10⁻⁴ 3.44482×10⁻⁴ 0.124014 2.41909×10² 2.90291×10³ 2.42071×10² 2.90485×10³ 1.40067 3.60241×10² 2.41747×10² 2.90096×10³ 2.41909×10² 2.90291×10³ 0.999331 1 3.6×10² 0.671520 8.05824 0.671969 8.06363 2.77592×10⁻³ 2.77778×10⁻³ 1 0.577789 6.93347×10² 57.8176 6.93811×10² 0.23846 0.239006 86.0421 0.577789 6.93347 0.578176 6.93811×10² 2.38846×10⁻</td> <td>Bturn Bturn in. Bturn in. Bturn in. Bturn in. Bturn in. Bturn in. Calr S⁻¹ Calr S⁻¹ Calr S⁻¹ Kcalr M⁻¹ J S⁻¹ 1 12 1.00067 12.0080 4.13379×10⁻³ 4.13656×10⁻³ 1.48916 1.73073×10⁻² 8.33333×10⁻² 1 8.33891×10⁻² 1.00067 3.44482×10⁻³ 3.44713×10⁴ 0.124097 1.44228×10⁻³ 0.999331 11.9920 1 12 4.13102×10⁻³ 4.13379×10³ 1.48816 1.72958×10⁻² 8.32776×10⁻² 0.999331 8.3333×10⁻² 1 3.44252×10⁴ 3.44482×10⁴ 0.124014 1.44131×10⁻³ 2.41909×10² 0.999331 8.3333×10⁻² 1 3.44252×10⁴ 3.44482×10⁴ 0.124014 1.44131×10⁻³ 2.41909×10² 2.90291×10³ 2.42071×10² 2.90485×10³ 1 1.00067 3.60241×10³ 4.1848 0.671520 8.05824 0.671969 8.66363 2.77592×10⁻³ 2.77778×10⁻³ 1 1.6222×10⁻² 57.77</td> <td>Bturn Bturn in. Bturn Bturn in. Calr S⁻¹ Calr S⁻¹ Kcalr M⁻¹ J S⁻¹ W cm⁻¹ K⁻¹ W cm⁻¹ K⁻¹ 1 12 1.00067 12.0080 4.13379×10⁻³ 4.13656×10⁻³ 1.48916 1.73073×10⁻² 1.73073×10⁻² 8.33333×10⁻² 1 8.33891×10⁻² 1.00067 3.44482×10⁻³ 3.44713×10⁴ 0.124097 1.44228×10⁻³ 0.999331 11.9920 1 12 4.13102×10⁻³ 4.13379×10⁻³ 1.48816 1.72958×10⁻² 1.72958×10⁻² 8.32776×10⁻² 0.999331 1 9.99331 3.333×10⁻² 1.413102×10⁻³ 4.13379×10⁻³ 1.48816 1.72958×10⁻² 1.72958×10⁻² 8.32776×10⁻² 0.999331 1 3.44252×10⁻⁴ 3.44452×10⁻⁴ 0.124014 1.44131×10⁻³ 1.44131×10⁻³ 2.41909×10² 2.90291×10³ 3.44252×10⁻⁴ 3.44452×10⁻⁴ 3.60241×10² 4.184 4.184 0.671520 8.05824 0.671969 5.603811×10² 2.77592×10⁻³</td> <td>Btur, h-ft Btu, in. h-ft Btu, in. h-ft Cal, s⁻¹ cm⁻¹ c⁻¹ kcal, h⁻¹ m⁻¹ c⁻¹ J s⁻¹ cm⁻¹ c⁻¹ W cm⁻¹ K⁻¹ W cm⁻¹ K⁻¹ W m⁻¹ K⁻¹ 1 12 1.00067 12.0080 4.13379×10⁻³ 4.13656×10⁻³ 1.48916 1.73073×10⁻² 1.74073×10⁻² 1.74073×10⁻² 1.74073×10⁻² 1.74073×10⁻²</td>	Btu, ft-1 f	Bturn Bturnin Bturnin Bturnin Calrs Calrs 1 12 1.00067 12.0080 4.13379×10 ⁻³ 8.33333×10 ⁻² 12 8.33891×10 ⁻² 1.00067 3.44482×10 ⁻³ 0.999331 11.9920 1 12 4.13102×10 ⁻³ 8.32776×10 ⁻² 0.999331 8.3333×10 ⁻² 1 3.44252×10 ⁻⁴ 2.41909×10 ² 0.909311 8.3333×10 ⁻² 1 3.44252×10 ⁻⁴ 2.41707×10 ² 2.90291×10 ³ 2.42071×10 ² 2.90485×10 ³ 1 2.41707×10 ² 2.90096×10 ³ 2.41090×10 ² 2.90291×10 ³ 0.999331 0.671520 8.05824 0.671969 8.06363 2.77592×10 ⁻³ 57.7789 6.93347×10 ² 57.8176 6.93811×10 ² 0.23846 0.577789 6.93347×10 ² 57.8176 6.93811×10 ² 0.23846	Btu _m Btu _m in. h ⁻¹ ft ⁻² °F ⁻¹ Btu _m h ⁻¹ ft ⁻¹ °F ⁻¹ Btu _m in. h ⁻¹ ft ⁻² °F ⁻¹ cal _m s ⁻¹ cm ⁻¹ °C ⁻¹ 1 12 1.00067 12.0080 4.13379×10 ⁻³ 4.13656×10 ⁻³ 8.33333×10 ⁻² 1 8.33891×10 ⁻² 1.00067 3.44482×10 ⁴ 3.44713×10 ⁴ 0.999331 11.9920 1 12 4.13102×10 ³ 4.13379×10 ⁻³ 8.32776×10 ⁻² 0.999331 8.3333×10 ⁻² 1 3.44482×10 ⁴ 3.44482×10 ⁴ 2.41909×10 ² 2.90291×10 ³ 2.42071×10 ² 2.90485×10 ³ 1.4 1.00067 2.41747×10 ² 2.90096×10 ³ 2.41909×10 ² 2.90291×10 ³ 0.999331 1 0.671520 8.05824 0.671969 8.06363 2.77592×10 ⁻³ 2.77778×10 ⁻³ 57.7789 6.93347×10 ² 57.8176 6.93811×10 ² 0.238846 0.239006 0.577789 6.93347 57.8176 6.93811×10 ² 2.3846 0.239006 0.577789 6.93347 0.578176 6.93811×10 ² 2.3846 0.239006	Btu _m Btu _m in. Btu _m in. Btu _m in. Cal _m s ⁻¹ Cal _m s ⁻¹ Cal _m s ⁻¹ Kcal _m h ⁻¹ 1 12 1.00067 12.0080 4.13379×10 ⁻³ 4.13656×10 ⁻³ 1.48916 8.33333×10 ⁻² 1 8.33891×10 ⁻² 1.00067 3.44482×10 ⁻⁴ 3.44713×10 ⁻⁴ 0.124097 0.999331 11.9920 1 12 4.13102×10 ⁻³ 4.13379×10 ⁻³ 1.48816 8.32776×10 ⁻² 0.999331 8.3333×10 ⁻² 1 3.44252×10 ⁻⁴ 3.44482×10 ⁻⁴ 0.124014 2.41909×10 ² 2.90291×10 ³ 2.42071×10 ² 2.90485×10 ³ 1.40067 3.60241×10 ² 2.41747×10 ² 2.90096×10 ³ 2.41909×10 ² 2.90291×10 ³ 0.999331 1 3.6×10 ² 0.671520 8.05824 0.671969 8.06363 2.77592×10 ⁻³ 2.77778×10 ⁻³ 1 0.577789 6.93347×10 ² 57.8176 6.93811×10 ² 0.23846 0.239006 86.0421 0.577789 6.93347 0.578176 6.93811×10 ² 2.38846×10 ⁻	Bturn Bturn in. Bturn in. Bturn in. Bturn in. Bturn in. Bturn in. Calr S ⁻¹ Calr S ⁻¹ Calr S ⁻¹ Kcalr M ⁻¹ J S ⁻¹ 1 12 1.00067 12.0080 4.13379×10 ⁻³ 4.13656×10 ⁻³ 1.48916 1.73073×10 ⁻² 8.33333×10 ⁻² 1 8.33891×10 ⁻² 1.00067 3.44482×10 ⁻³ 3.44713×10 ⁴ 0.124097 1.44228×10 ⁻³ 0.999331 11.9920 1 12 4.13102×10 ⁻³ 4.13379×10 ³ 1.48816 1.72958×10 ⁻² 8.32776×10 ⁻² 0.999331 8.3333×10 ⁻² 1 3.44252×10 ⁴ 3.44482×10 ⁴ 0.124014 1.44131×10 ⁻³ 2.41909×10 ² 0.999331 8.3333×10 ⁻² 1 3.44252×10 ⁴ 3.44482×10 ⁴ 0.124014 1.44131×10 ⁻³ 2.41909×10 ² 2.90291×10 ³ 2.42071×10 ² 2.90485×10 ³ 1 1.00067 3.60241×10 ³ 4.1848 0.671520 8.05824 0.671969 8.66363 2.77592×10 ⁻³ 2.77778×10 ⁻³ 1 1.6222×10 ⁻² 57.77	Bturn Bturn in. Bturn Bturn in. Calr S ⁻¹ Calr S ⁻¹ Kcalr M ⁻¹ J S ⁻¹ W cm ⁻¹ K ⁻¹ W cm ⁻¹ K ⁻¹ 1 12 1.00067 12.0080 4.13379×10 ⁻³ 4.13656×10 ⁻³ 1.48916 1.73073×10 ⁻² 1.73073×10 ⁻² 8.33333×10 ⁻² 1 8.33891×10 ⁻² 1.00067 3.44482×10 ⁻³ 3.44713×10 ⁴ 0.124097 1.44228×10 ⁻³ 0.999331 11.9920 1 12 4.13102×10 ⁻³ 4.13379×10 ⁻³ 1.48816 1.72958×10 ⁻² 1.72958×10 ⁻² 8.32776×10 ⁻² 0.999331 1 9.99331 3.333×10 ⁻² 1.413102×10 ⁻³ 4.13379×10 ⁻³ 1.48816 1.72958×10 ⁻² 1.72958×10 ⁻² 8.32776×10 ⁻² 0.999331 1 3.44252×10 ⁻⁴ 3.44452×10 ⁻⁴ 0.124014 1.44131×10 ⁻³ 1.44131×10 ⁻³ 2.41909×10 ² 2.90291×10 ³ 3.44252×10 ⁻⁴ 3.44452×10 ⁻⁴ 3.60241×10 ² 4.184 4.184 0.671520 8.05824 0.671969 5.603811×10 ² 2.77592×10 ⁻³	Btur, h-ft Btu, in. h-ft Btu, in. h-ft Cal, s ⁻¹ cm ⁻¹ c ⁻¹ kcal, h ⁻¹ m ⁻¹ c ⁻¹ J s ⁻¹ cm ⁻¹ c ⁻¹ W cm ⁻¹ K ⁻¹ W cm ⁻¹ K ⁻¹ W m ⁻¹ K ⁻¹ 1 12 1.00067 12.0080 4.13379×10 ⁻³ 4.13656×10 ⁻³ 1.48916 1.73073×10 ⁻² 1.74073×10 ⁻² 1.74073×10 ⁻² 1.74073×10 ⁻² 1.74073×10 ⁻²

CONVERSION FACTORS FOR ELECTRICAL RESISTIVITY UNITS

To convert FROM \downarrow multiply by appropriate factor to OBTAIN \rightarrow	abΩ cm	μΩ cm	Ωcm	StatΩ cm	Ωm	Ω cir. mil ft ⁻¹	Ω in.	Ωft
abohm centimeter	1	1×10^{-3}	10 ⁻⁹	1.113×10^{-21}	10^{-11}	6.015×10^{-3}	3.937×10^{-10}	3.281×10^{-11}
microohm centimeter	10^{3}	1	10-6	$1.113\times10^{_{-18}}$	10^{-8}	6.015	3.937×10^{-7}	3.281×10^{_6}
ohm centimeter	10^{8}	10^{6}	1	$1.113\times10^{_{-12}}$	1×10^{-2}	6.015×10^{6}	$3.937\times10^{\scriptscriptstyle -1}$	$3.281\times10^{\scriptscriptstyle -2}$
statohm centimeter (esu)	8.987×10^{20}	$8.987\times10^{\scriptscriptstyle 17}$	8.987×10^{11}	1	8.987×10^9	$5.406\times10^{\scriptscriptstyle 18}$	$3.538\times10^{\scriptscriptstyle 11}$	$2.949\times10^{\scriptscriptstyle 10}$
ohm meter	1011	10^{8}	10 ²	$1.113\times10^{\scriptscriptstyle -10}$	1	6.015×10^8	3.937×10^{1}	3.281
ohm circular mil per foot	1.662×10^2	$1.662\times10^{\scriptscriptstyle -1}$	1.662×10^{_7}	$1.850\times10^{_{-19}}$	1.662×10^{-9}	1	6.54×10^{-6}	5.45×10^{-9}
ohm inch	2.54×10^9	2.54×10^6	2.54	2.827×10^{-12}	$2.54\times10^{\scriptscriptstyle -2}$	1.528×10^7	1	8.3×10^{-2}
ohm foot	$3.048\times10^{\scriptscriptstyle 10}$	3.048×10^7	$3.048\times10^{\scriptscriptstyle -1}$	3.3924×10^{-11}	$3.048\times10^{\scriptscriptstyle -1}$	1.833×10^8	12	1

CONVERSION FACTORS FOR CHEMICAL KINETICS

Equivalent Second Order Rate Constants

В				cm ³				
A	cm ³ mol ⁻¹ s ⁻¹	$dm^3 mol^{-1}s^{-1}$	$m^{3} mol^{-1}s^{-1}$	molecule ⁻¹ s ⁻¹	(mm Hg) ⁻¹ s ⁻¹	atm ⁻¹ s ⁻¹	ppm ⁻¹ min ⁻¹	$m^2 k N^{-1} s^{-1}$
1 cm ³ mol ⁻¹ s ⁻¹ =	1	10-3	10-6	1.66×10^{-24}	$1.604 \times 10^{-5} T^{-1}$	$1.219 imes 10^{-2} T^{-1}$	$2.453\times10^{_{-9}}$	$1.203 imes 10^{-4} T^{-1}$
$1 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1} =$	10 ³	1	10-3	1.66×10^{-21}	$1.604 \times 10^{-2} T^{-1}$	12.19 T^{-1}	$2.453\times10^{\text{-6}}$	$1.203 imes 10^{-1} T^{-1}$
1 m ³ mol ⁻¹ s ⁻¹ =	106	10 ³	1	$1.66 imes 10^{-18}$	16.04 T^{-1}	$1.219 imes 10^4 T^{-1}$	$2.453\times10^{\scriptscriptstyle -3}$	120.3 T^{-1}
1cm ³ molecule ⁻¹ s ⁻¹ =	$6.023 imes10^{23}$	$6.023 imes10^{20}$	$6.023 imes10^{17}$	1	$9.658 imes 10^{18} T^{-1}$	$7.34 imes 10^{21} T^{-1}$	$1.478\times10^{\scriptscriptstyle 15}$	$7.244 imes 10^{19} T^{-1}$
1 (mm Hg) ⁻¹ s ⁻¹ =	6.236×10^4T	62.36 T	$6.236\times10^{\text{-2}}\ T$	$1.035 imes 10^{-19} T$	1	760	$4.56\times10^{\text{-2}}$	7.500
1 atm ⁻¹ s ⁻¹	82.06 T	$8.206\times10^{\text{-2}}\ T$	$8.206\times10^{\text{-5}}T$	$1.362\times10^{\text{-22}}\ T$	1.316×10^{-3}	1	6×10^{-5}	9.869×10^{-3}
1 ppm ⁻¹ min ⁻¹ = at 298 K, 1 atm total pressure	4.077×10^{8}	4.077×10^{5}	407.7	6.76×10^{-16}	21.93	1.667×10^4	1	164.5
$1 m^2 k N^{-1} s^{-1} =$	8314 T	8.314 T	$8.314 \times 10^{\scriptscriptstyle -3} \ T$	$1.38\times10^{\text{-20}}\ T$	0.1333	101.325	$6.079 imes 10^{-3}$	1

To convert a rate constant from one set of units A to a new set B find the conversion factor for the row A under column B and multiply the old value by it, e.g.. to convert cm³ molecule⁻¹ s⁻¹ to m³ mol⁻¹ s⁻¹ multiply by 6.023×10^{17} .

Table adapted from High Temperature Reaction Rate Data No. 5, The University, Leeds (1970).

Equivalent Third Order Rate Constants

В				cm ⁶				
A	cm ⁶ mol ⁻² s ⁻¹	dm ⁶ mol ⁻¹ s ⁻¹	$m^6 mol^{-2} s^{-1}$	molecule ⁻² s ⁻¹	$(mm Hg)^{-2} s^{-1}$	atm ⁻² s ⁻¹	ppm ⁻² min ⁻¹	$m^4 k N^{-2} s^{-1}$
$1 \text{ cm}^6 \text{ mol}^{-2} \text{ s}^{-1} =$	1	10-6	10-12	$2.76 imes 10^{-48}$	$2.57 imes 10^{-10} T^{-2}$	1.48 ×10 ⁻⁴ T ⁻²	$1.003 imes 10^{-19}$	$1.477 \times 10^{-8} T^{-2}$
$1 \text{ dm}^6 \text{ mol}^{-2} \text{ s}^{-1} =$	106	1	10-6	$2.76 imes 10^{-42}$	$2.57 imes 10^{-4} T^{-2}$	$148 T^{-2}$	$1.003 imes 10^{-13}$	$1.477 imes 10^{-2} T^{-2}$
1 m ⁶ mol ⁻² s ⁻¹ =	10^{12}	106	1	$2.76 imes 10^{-36}$	257 T ⁻²	$1.48 \times 10^{8} T^{-2}$	$1.003\times10^{\text{-7}}$	$1.477 imes 10^4 T^{-2}$
1cm ⁶ molecule ⁻² s ⁻¹ =	$3.628\times10^{\scriptscriptstyle 47}$	$3.628\times10^{\scriptscriptstyle 41}$	$3.628\times10^{\scriptscriptstyle 35}$	1	$9.328 \times 10^{37} T^{-2}$	$5.388 imes 10^{43} T^{2}$	$3.64\times10^{\scriptscriptstyle 28}$	$5.248 imes 10^{39} T^{-2}$
1 (mm Hg) ⁻² s ⁻¹ =	$3.89\times10^9\ T^2$	$3.89 \times 10^3 T^2$	$3.89 imes 10^{-3} T^2$	$1.07 imes 10^{-38} T^2$	1	$5.776 imes10^5$	$3.46\times10^{\text{-5}}$	56.25
$1 \text{ atm}^{-2} \text{ s}^{-1} =$	$6.733\times10^3~T^2$	$6.733 imes 10^{-3} T^2$	$6.733 imes 10^{-9} T^2$	$1.86 imes 10^{-44} T^2$	$1.73\times10^{\text{-6}}$	1	6×10^{-11}	9.74×10^{-5}
1 ppm ⁻² min ⁻¹ = at 298K, 1 atm total pressure	9.97×10^{18}	9.97×10^{12}	9.97×10^{6}	2.75×10^{-29}	2.89×10^4	1.667×10^{10}	1	1.623×10^{6}
$1 \text{ m}^1 \text{kN}^{-2} \text{s}^{-1} =$	$6.91 \times 10^7 T^2$	6.91 T ²	$69.1 \times 10^{-5} T^2$	$1.904 \times 10^{-40} T^2$	0.0178	$1.027 imes 10^4$	$6.16 imes 10^{-7}$	1

From J. Phys. Chem. Ref. Data, 9, 470, 1980, by permission of the authors and the copyright owner, the American Institute of Physics.

CONVERSION FACTORS FOR IONIZING RADIATION

Conversion Between SI and Other Units

	Symbol		Expression	Special	Symbols using		Symbol for	
Quantity	for quantity	Expression in SI units	in symbols for SI units	name for SI units	special names	Conventional units	conventional unit	Value of conventional unit in SI units
Activity	Α	1 per second	S^{-1}	becquerel	Bq	curie	Ci	$3.7 \times 10^{10} \text{ Bq}$
Absorbed dose	D	joule per kilogram	J kg ⁻¹	gray	Gy	rad	rad	0.01 Gy
Absorbed dose rate	Ď	joule per kilogram second	J kg $^{-1}$ s $^{-1}$		$Gy \ s^{-1}$	rad	rad s ⁻¹	0.01 Gy s^{-1}
Average energy per ion pair	W	joule	J			electronvolt	eV	$1.602 \times 10^{-19} \text{ J}$
Dose equivalent	Н	joule per kilogram	J kg ⁻¹	sievert	Sv	rem	rem	0.01 Sv
Dose equivalent rate	Ĥ	joule per kilogram second	J $kg^{-1} s^{-1}$		Sv s ⁻¹	rem per second	rem s ⁻¹	0.01 Sv s ⁻¹
Electric current	Ι	ampere	А			ampere	А	1.0 A
Electric potential difference	И, V	watt per ampere	$W A^{-1}$	volt	V	volt	V	1.0 V
Exposure	Ż	coulomb per kilogram	$C \text{ kg}^{-1}$			roentgen	R	$2.58 \times 10^{-4} \ C \ kg^{-1}$
Exposure rate	Х	coulomb per kilogram second	$C \ kg^{-1} \ s^{-1}$			roentgen	$R \ s^{-1}$	$2.58\times 10^{-4}\ C\ kg^{-1}\ s^{-1}$
Fluence	φ	1 per meter squared	m^{-2}			1 per centimeter squared	cm ⁻²	$1.0\times10^4m^{-2}$
Fluence rate	Φ	1 per meter squared second	$m^{-2} s^{-1}$			1 per centimeter squared second	${\rm cm}^{-2}~{\rm s}^{-1}$	$1.0\times 10^4m^{-2}s^{-1}$
Kerma	Κ	joule per kilogram	J kg ⁻¹	gray	Gy	rad	rad	0.01 Gy
Kerma rate	Ķ	joule per kilogram second	J kg $^{-1}$ s $^{-1}$		$Gy \ s^{-1}$	rad per second	rad s ⁻¹	0.01 Gy s^{-1}
Lineal energy	у	joule per meter	J m ⁻¹			kiloelectron volt per micrometer	$keV \ \mu m^{-1}$	$1.602 \times 10^{-10} \text{ Jm}^{-1}$
Linear energy transfer	L	joule per meter	J m ⁻¹			kiloelectron volt per micrometer	$keV \ \mu m^{-1}$	$1.602 \times 10^{-10} \text{ J m}^{-1}$
Mass attenuation coefficient	μ/ρ	meter squared per kilogram	$m^2 kg^{-1}$			centimeter squared per gram	$\mathrm{cm}^2\mathrm{g}^{-1}$	$0.1 \ m^2 \ kg^{-1}$
Mass energy transfer coefficient	$\mu_{\rm tr}/\rho$	meter squared per kilogram	$m^2 kg^{-1}$			centimeter squared per gram	$cm^2 g^{-1}$	$0.1 \text{ m}^2 \text{ kg}^{-1}$
Mass energy absorption coefficient	μ_{en}/ρ	meter squared per kilogram	$m^2 kg^{-1}$			centimeter squared per gram	$cm^2 g^{-1}$	$0.1 \text{ m}^2 \text{ kg}^{-1}$
Mass stopping power	S/ρ	joule meter squared per kilogram	$J m^2 kg^{-1}$			MeV centimeter squared per gram	$MeV\ cm^2\ g^{-1}$	$1.602 \times 10^{-14} \text{ J m}^2 \text{ kg}^{-1}$
Power	Р	joule per second	$J s^{-1}$	watt	W	watt	W	1.0 W
Pressure	р	newton per meter squared	N m ⁻²	pascal	Ра	torr	torr	(101325/760)Pa
Radiation chemical yield	G	mole per joule	mol J ⁻¹			molecules per 100 electron volts	molecules (100 eV) ⁻¹	$1.04 \times 10^{-7} \text{ mol } J^{-1}$
Specific energy	z	joule per kilogram	J kg ⁻¹	gray	Gy	rad	rad	0.01 Gy

MBq	mCi	MBq	mCi	MBq	mCi	MBq	mCi	MBq	mCi
7000	189.	700	18.9	70	1.89	7	189	0.7	18.9
6000	162.	600	16.2	60	1.62	6	162	0.6	16.2
5000	135.	500	13.5	50	1.35	5	135	0.5	13.5
4000	108.	400	10.8	40	1.08	4	108	0.4	10.8
3000	81.	300	8.1	30	810	3	81	0.3	8.1
2000	54.	200	5.4	20	540	2	54	0.2	5.4
1000	27.	100	2.7	10	270	1	27	0.1	2.7
900	24.	90	2.4	9	240	0.9	24		
800	21.6	80	2.16	8	220	0.8	21.6		

Conversion of Radioactivity Units from MBq to mCi and μCi

Conversion of Radioactivity Units from mCi and μCi to MBq

mCi	MBq	mCi	MBq	mCi	MBq	μCi	MBq	μCi	MBq	μCi	MBq
200	7400	40	1480	5	185	1000	37.0	200	7.4	30	1.11
150	5550	30	1110	4	148	900	33.3	100	3.7	20	0.74
100	3700	20	740	3	111	800	29.6	90	3.33	10	0.37
90	3330	10	370	2	74.0	700	25.9	80	2.96	5	0.185
80	2960	9	333	1	37.0	600	22.2	70	2.59	2	0.074
70	2590	8	296			500	18.5	60	2.22	1	0.037
60	2220	7	259			400	14.8	50	1.85		
50	1850	6	222			300	11.1	40	1.48		

Conversion of Radioactivity Units

100 TBq (10 ¹⁴ Bq)	=	$2.7 \text{ kCi} (2.7 \times 10^3 \text{ Ci})$	100 kBq (10 ⁵ Bq)	=	$2.7 \ \mu Ci \ (2.7 \times 10^{-6}Ci)$
10 TBq (10 ¹³ Bq)	=	270 Ci $(2.7 \times 10^2 \text{ Ci})$	10 kBq (10 ⁴ Bq)	=	270 nCi (2.7 × 10 ⁻⁷ Ci)
1 TBq (10 ¹² Bq)	=	27 Ci $(2.7 \times 10^{1} \text{ Ci})$	1 kBq (10 ³ Bq)	=	27 nCi (2.7 × 10 ⁻⁸ Ci)
100 GBq (10 ¹¹ Bq)	=	2.7 Ci (2.7 × 10° Ci)	100 Bq (10 ² Bq)	=	2.7 nCi (2.7 × 10 ⁻⁹ Ci)
10 GBq (10 ¹⁰ Bq)	=	270 mCi $(2.7 \times 10^{-1} \text{ Ci})$	10 Bq (10 ¹ Bq)	=	270 pCi (2.7 × 10^{-10} Ci)
1 GBq (10º Bq)	=	27 mCi $(2.7 \times 10^{-2} \text{ Ci})$	1 Bq (10º Bq)	=	27 pCi (2.7×10^{-11} Ci)
100 MBq (10 ⁸ Bq)	=	$2.7 \text{ mCi} (2.7 \times 10^{-3} \text{ Ci})$	100 mBq (10 ⁻¹ Bq)	=	$2.7 \text{ pCi} (2.7 \times 10^{-12} \text{ Ci})$
10 MBq (10 ⁷ Bq)	=	270 μ Ci (2.7 × 10 ⁻⁴ Ci)	10 mBq (10 ⁻² Bq)	=	270 fCi (2.7 × 10 ⁻¹³ Ci)
1 MBq (10 ⁶ Bq)	=	27 μ Ci (2.7 × 10 ⁻⁵ Ci)	1 mBq (10 ⁻³ Bq)	=	27 fCi (2.7 × 10^{-14} Ci)

Conversion of Absorbed Dose Units

SI Units	Conventional	SI Units	Conventional
100 Gy (10 ² Gy)	= 10,000 rad (10 ⁴ rad)	$100 \ \mu Gy \ (10^{-4} \ Gy) =$	= 10 mrad (10 ⁻² rad)
10 Gy (10 ¹ Gy)	= 1,000 rad (10 ³ rad)	10 µGy (10 ⁻⁵ Gy) =	= 1 mrad (10 ⁻³ rad)
1 Gy (10° Gy)	= 100 rad (10 ² rad)	$1 \ \mu Gy (10^{-6} \ Gy) =$	= 100 μrad (10 ⁻⁴ rad)
100 mGy (10 ⁻¹ Gy)	= 10 rad (10 ¹ rad)	$100 \text{ nGy} (10^{-7} \text{ Gy}) =$	= 10 μrad (10 ⁻⁵ rad)
10 mGy (10 ⁻² Gy)	= 1 rad (10 ^o rad)	10 nGy (10 ⁻⁸ Gy) =	= 1 μrad (10 ⁻⁶ rad)
1 mGy (10 ⁻³ Gy)	= 100 mrad (10 ⁻¹ rad)	1 nGy (10 ⁻⁹ Gy) =	= 100 nrad (10 ⁻⁷ rad)

Conversion of Dose Equivalent Units

100 Sv (10 ² Sv)	=	10,000 rem (10 ⁴ rem)	100 µSv (10 ⁻⁴ Sv)	=	10 mrem (10 ⁻² rem)
10 Sv (10 ¹ Sv)	=	1,000 rem (10 ³ rem)	10 µSv (10 ⁻⁵ Sv)	=	1 mrem (10 ⁻³ rem)
1 Sv (10° Sv)	=	100 rem (10 ² rem)	1 μSv (10 ⁻⁶ Sv)	=	100 µrem (10 ⁻⁴ rem)
100 mSv (10 ⁻¹ Sv)	=	10 rem (10 ¹ rem)	100 nSv (10 ⁻⁷ Sv)	=	10 µrem (10 ⁻⁵ rem)
10 mSv (10 ⁻² Sv)	=	1 rem (10º rem)	10 nSv (10 ⁻⁸ Sv)	=	1 μrem (10 ⁻⁶ rem)
1 mSv (10 ⁻³ Sv)	=	100 mrem (10 ⁻¹ rem)	1 nSv (10 ⁻⁹ Sv)	=	100 nrem (10 ⁻⁷ rem)

VALUES OF THE GAS CONSTANT IN DIFFERENT UNIT SYSTEMS

In SI units the value of the gas constant, *R*, is:

 $\begin{array}{ll} {\cal R} &= 8.314472 \ {\rm Pa} \ {\rm m}^3 \ {\rm K}^{\rm -1} \ {\rm mol}^{\rm -1} \\ &= 8314.472 \ {\rm Pa} \ {\rm L} \ {\rm K}^{\rm -1} \ {\rm mol}^{\rm -1} \\ &= 0.08314472 \ {\rm bar} \ {\rm L} \ {\rm K}^{\rm -1} \ {\rm mol}^{\rm -1} \end{array}$

This table gives the appropriate value of *R* for use in the ideal gas equation, PV = nRT, when the variables are expressed in other units. The following conversion factors for pressure units were used in generating the table:

1 atm = 101325 Pa 1 psi = 6894.757 Pa 1 torr (mm Hg) = 133.322 Pa [at 0°C] 1 in Hg = 3386.38 Pa [at 0°C] 1 in H₂O = 249.082 Pa [at 4°C] 1 ft H₂O = 2988.98 Pa [at 4°C]

Reference

Mohr, P. J., and Taylor, B. N., "The 2002 CODATA Recommended Values of the Fundamental Physical Constants", *Rev. Mod. Phys.* 77, 1, 2005. See also http://physics.nist.gov/constants>

U	nits of	V, T, n				Units of P			
\overline{V}	Т	п	kPa	atm	psi	mmHg	in Hg	in H ₂ O	ft H ₂ O
ft ³	Κ	mol	0.2936228	0.00289784	0.0425864	2.20236	0.0867070	1.17881	0.0982351
		lb∙mol	133.1851	1.31443	19.3168	998.973	39.3296	534.704	44.5587
	°R	mol	0.1631238	0.00160990	0.0236591	1.22353	0.0481706	0.654900	0.0545751
		lb∙mol	73.99170	0.730242	10.7316	554.984	21.8498	297.058	24.7548
cm ³	Κ	mol	8314.472	82.0574	1205.91	62363.8	2455.27	33380.4	2781.71
		lb∙mol	3771381	37220.6	546993	282878000	1113690	15141100	1261760
	°R	mol	4619.151	45.5875	669.951	34646.5	1364.03	18544.7	1545.39
		lb∙mol	2095211	20678.1	303885	15715400	618717	8411730	700979
L	Κ	mol	8.314472	0.0820574	1.20591	62.3638	2.45527	33.3804	2.78171
		lb∙mol	3771.381	37.2206	546.993	28287.8	1113.69	15141.1	1261.76
	°R	mol	4.619151	0.0455875	0.669951	34.6465	1.36403	18.5447	1.54539
		lb∙mol	2095.211	20.6781	303.885	15715.4	618.717	8411.73	700.979
m ³	Κ	mol	0.008314472	0.0000820574	0.00120591	0.0623638	0.00245527	0.0333804	0.00278171
		lb∙mol	3.771381	0.0372206	0.546993	28.2878	1.11369	15.1411	1.26176
	°R	mol	0.004619151	0.0000455875	0.000669951	0.0346465	0.00136403	0.0185447	0.00154539
		lb∙mol	2.095211	0.0206781	0.303885	15.7154	0.618717	8.41173	0.700979

Ē
Ζ
ш
5
Ш
ш
T
IT
Ц.
Ō
\BLE
2
۲A
()
Ľ
\mathbf{U}
ERIC

[Shell	×		K-L		K-L-M		-L-M-N		0-N-M-		4-0-N-		-0-P-Q		-N-O-P		Q-9-0-
18	VIIIA	2 0 He 4.002602 2	10 0 Ne 0	20.1797 2-8	18 0 Ar	39.948 2-8-8	36 ⁰ Kr	83.798 -8-18-8	54 0 Xe 0	131.293 -18-18-8	86 ⁰ Rn	(222) -32-18-8		-		. 1.		
17 VIID			9 F	18.9984032 2 2-7	$^{17}_{CI}$ $^{+5}_{+7}$	-1 35.453 -1 2-8-7	35 +1 Br +5 -1	79.904	53 +1 I +5 ·.	-1 126.90447 -18-18-7	85 At	(210) -32-18-7 -						
16 VID				1 2 3 2-6	+3 16 +4 +5 S +6 -3 S -2	32.065 2-8-6	+3 34 +4 +5 Se +6 -3 Se -2	78.96 -8-18-6	+3 52 +4 +5 Te +6 -3 Te -2	127.60 -18-18-6	⁺³ 84 ⁺² +5 Po ⁺⁴	(209) -32-18-6	116 Uuh	(289)	+2 71 +3 +3 Lu	174.967 -32-9-2	+2 +3 Lr +3	(262) -32-8-3
15	VA VA		+++++	14.0067	P 15	30.973761 2-8-5	33 As	74.92160 -8-18-5	51 Sb	121.760 -18-18-5	83 Bi	208.98038 -32-18-5			70 ⁺	173.04 -32-8-2	102 No	(259) -32-8-2
14	IVA		2 C 6 C 5 5 ± 5	12.0107 2-4	14 Si ⁺² 44 4	28.0855 2-8-4	32 +2 Ge +4	72.64 -8-18-4	50 +2 Sn +4	118.710 -18-18 -4	Bb +2 Pb +4	207.2 -32-18-4	114 Uuq	(289)	69 +3 Tm	168.93421 -31-8-2	³ 101 +2 Md +3	(258) -31-8-2
∎ 12			5 B	10.811 2-3	13 +3 Al	26.981538 2-8-3	+2 31 +3 Ga	69.723 -8-18-3	+2 49 +3 In	114.818 -18-18-3	$^{+1}_{+2}$ $^{+1}_{T1}$ $^{+1}_{+3}$ $^{+1}_{+3}$	204.3833 -32-18-3			+3 68 +3 Er	2 167.259 -30-8-2	+3 100 +3 Fm	(257) -30-8-2
			Oxidation States			IIB	+1 30 - +2 Zn	65.409 -8-18-2	+1 48 - Cd	82 112.411 1 -18-18-2	+1 80 - +3 Hg -	555 200.59 1 -32-18-2	112 Uub	(285)	+3 67 - Ho) 164.93032 -29-8-2	+3 99 - Es	(252) -29-8-2
			— Oxidatic	Electron	Cont		+2 29 +3 Cu	34 63.546 2 -8-18-1	+2 47 +3 Ag	2 107.8682 1-0 -18-18-1	+2 79 +4 Au	78 196.96655 -1 -32-18-1	111 Rg	;-2 (272)	+3 66 Dy	2534 162.500 2 -28-8-2	+3 98 +4 Cf	2 (251)
			Key to Chart 50 +2 ▲	710			+2 +3 Ni	58.933200 58.6934 -8-15-2 -8-16-2	+3 46 Pd	102.90550 106.42 -18-16-1 -18-18-0	+3 78 +4 Pt	17 195.078 5-2 -32-17-1	110 Ds	5-2 (271) -32-16-2	+3 65 Tb	25 158.92534 -2 -27-8-2	+3 97 Bk	-2 (247)
-			Key 50	118.710	~		+2 +3 Co		+3 45 Rh	101.07 -18-15-1 -18-1	+3 +4 Ir	190.23 192.217 -32-14-2 -32-15-2	8 109 Mt	(277) (268) -32-14-2 (268)	+2 64 +3 Gd	151.964 157.25 -25-8-2 -25-9-2	n +5 Cm	3) +6 (247) 8-2 -25-9-2
New Notation	CAS Version		Number — Svmhol —	Weight —	٢	VIIA VIIB		54.938049 -8-13-2 -8-14-2	+4 44 +6 Ru	13-2	++4 76 ++6 Os	-32-13-2 -32-	7 108 1 Hs	(264) (277 -32-13-2 -32-	n +2 63 Eu	150.36 151. -24-8-2 -25-		12
N ::			Atomic Number Svmbol	2001 Atomic Weight		VIA	$\begin{array}{cccc} 4 & +2 & 25 \\ r & +3 & Mn \\ r & +6 & Mn \end{array}$	51.9961 54. -8-13-1 -8-	42 +6 43 Mo Tc	95.94 (98) -18-13-1 -18-	4 +6 75 / Re	183.84 180 -32-12-2 -32	106 107 Sg Bh	(266) -32-12-2 -32	61 +3 62 Pm Sm	(145) 15(-23-8-2 -24	93 +3 94 Np +5 Pu	
					v	VB VB	+2 23 +2 23 +2 2 +4 V +4 C	50.9415 50.9415 -8-11-2 -8	⁺⁴ 41 +3 42 Nb +5 MG	92.90638 95 -18-12-1 -1	73 +5 74 Ta W	180.9479 18 -32-11-2 -3	+4 105 1 Db S	(262) -32-11-2 -3	60 ⁺³ Nd	144.24 -22-8-2	92 +3 U +5	238.02891 -21-9-2
					~	ISB A	Ti 1	47.867 -8-10-2	40 Zr	91.224 -18-10-2	Hf +4	178.49 -32-10-2	104 Rf	(261) -32-10-2	59 +3 Pr	140.90765 -21-8-2	91 +5 Pa +4	231.03588 -20-9-2
		[2			BIII	+2 21 +3 Sc	44.955910 -8-9-2	+2 39 +3 Y	88.90585 -18-9-2	+2 57* +3 La	138.9055 -18-9-2	+2 89** +3 Ac	(227) -18-9-2	58 +3 Ce +4	140.116 -19-9-2	90 +4 Th	232.0381 -18-10-2
5	ШA		+1 4 +2 Be	9.012182 2-2	+1 12 +2 Mg	0 24.3050 2-8-2	+1 20 +(Ca	40.078 -8-2	+1 38 ±	87.62 -18-8-2	+1 56 +/ Ba	5 137.327 -18-8-2	+1 88 +. Ra	(226) -18-8-2	nides		nides	
1	IA	1 H 1.00794	Li +	6.941 2-1	11 + Na	22.989770 2-8-1	19 K	39.0983 -8-8-1	37 ⁺ Rb	85.4678 -18-8-1	55 + Cs	132.90545 -18-8-1	87 + Fr	(223) -18-8-1	* Lanthanides		** Actinides	

The new IUPAC format numbers the groups from 1 to 18. The previous IUPAC numbering system and the system used by Chemical Abstracts Service (CAS) are also shown. For radioactive elements that do not occur in nature, the mass number of the most stable isotope is given in parentheses. Elements 112, 114, and 116 have been reported but not confirmed.

References I. G. J. Leigh, Editor, Nomenclature of Inorganic Chemistry, Blackwell Scientific Publications, Oxford, 1990. 2. Chemical and Engineering News, 63(5), 27, 1985. 3. Atomic Weights of the Elements, 2001, Pure & Appl. Chem., 75, 1107, 2003.

Non-metallic solids Metallic solids

UNITS FOR MAGNETIC PROPERTIES

Quantity Magnetic flux density, magnetic	Symbol	Gaussian & cgs emu ª	Conversion factor, C ^b	SI & rationalized mks ^c
induction	В	gauss (G) d	10-4	tesla (T), Wb/m²
Magnetic flux	Φ	maxwell (Mx), $G \cdot cm^2$	10-8	weber (Wb), volt second (V \cdot s)
Magnetic potential difference, magnetomotive force Magnetic field strength,	<i>U, F</i>	gilbert (Gb)	10/4π	ampere (A)
magnetizing force	Н	oersted (Oe), ^e Gb/cm	$10^{3}/4\pi$	A/m ^f
(Volume) magnetization ^g	M	emu/cm ^{3 h}	10 ³	A/m
(Volume) magnetization	$4\pi M$	G	$10^{3}/4\pi$	A/m
Magnetic polarization, intensity of magnetization	<i>J</i> , <i>I</i>	emu/cm ³	$4\pi \times 10^{-4}$	T, Wb/m ² ^{<i>i</i>}
(Mass) magnetization	σ, Μ	emu/g	1	$A \cdot m^2/kg$
()	-,	,8	- 4π × 10 ⁻⁷	Wb·m/kg
Magnetic moment	т	emu, erg/G	10-3	$A \cdot m^2$, joule per tesla (J/T)
Magnetic dipole moment	j	emu, erg/G	$4\pi imes 10^{-10}$	Wb·m ⁱ
(Volume) susceptibility	χ ,κ	dimensionless, emu/cm ³	4π	dimensionless
			$(4\pi)^2 \times 10^{-7}$	henry per meter (H/m), Wb/(A·m)
(Mass) susceptibility	χ _ο ,κ _ο	cm³/g, emu/g	$4\pi \times 10^{-3}$	m³/kg
	. P. P.		$(4\pi)^2 \times 10^{-10}$	H·m ² /kg
(Molar) susceptibility	χ_{mol} , κ_{mol}	cm ³ /mol, emu/mol	$4\pi \times 10^{-6}$	m³/mol
			$(4\pi)^2 \times 10^{-13}$	H·m²/mol
Permeability	μ	dimensionless	$4\pi \times 10^{-7}$	H/m, Wb/(A·m)
Relative permeability ^{<i>j</i>}	μ_r	not defined		dimensionless
(Volume) energy density, energy	-			
product ^k	W	erg/cm ³	10-1	J/m ³
Demagnetization factor	D, N	dimensionless	$1/4\pi$	dimensionless

^{a.} Gaussian units and cgs emu are the same for magnetic properties. The defining relation is $B = H + 4\pi M$.

^{b.} Multiply a number in Gaussian units by C to convert it to SI (e.g., $1 \text{ G} \times 10^{-4} \text{ T/G} = 10^{-4} \text{ T}$).

^c SI (*Système International d'Unités*) has been adopted by the National Bureau of Standards. Where two conversion factors are given, the upper one is recognized under, or consistent with, SI and is based on the definition $B = \mu_0 (H + M)$, where $\mu_0 = 4\pi \times 10^{-7}$ H/m. The lower one is not recognized under SI and is based on the definition $B = \mu_0 H + J$, where the symbol *I* is often used in place of *J*.

^{*d*} 1 gauss = 10^5 gamma (γ).

^{e.} Both oersted and gauss are expressed as cm^{-1/2}.g^{1/2}.s⁻¹ in terms of base units.

^f A/m was often expressed as "ampere-turn per meter" when used for magnetic field strength.

^g Magnetic moment per unit volume.

^{*h.*} The designation "emu" is not a unit.

^{*j*} $\mu_r = \mu/\mu_0 = 1 + \chi$, all in SI. μ_r is equal to Gaussian μ .

^k $B \cdot H$ and $\mu_0 M \cdot H$ have SI units J/m^3 ; $M \cdot H$ and $B \cdot H/4\pi$ have Gaussian units erg/cm³.

R. B. Goldfarb and F. R. Fickett, U.S. Department of Commerce, National Bureau of Standards, Boulder, Colorado 80303, March 1985, NBS Special Publication 696. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402.

^{*i*} Recognized under SI, even though based on the definition $B = \mu_0 H + J$. See footnote *c*.